
SortalGI plug-in for Grasshopper
User manual

SortalGI version 0.4
Manual update 14 June 2018
Written by Rudi Stouffs

Table of content

1. About the SortalGI plug-in 2

2. Installation and update 3

3. Starting on a SortalGI-based parametric model 5

4. Creating a shape object 7

5. Manipulating a shape object 9

6. Creating a rule 12

7. Applying a rule 15

8. Specifying shape descriptions 18

Appendix A. A formal notation for shape descriptions 23

Appendix B. Description functions 27

Appendix C: FAQ 29

1. About the SortalGI plug-in

A shape rule combines a specification of recognition and manipulation. A shape rule is
commonly specified in the form lhs ® rhs, where the left-hand-side (lhs) of the rule
specifies the pattern to be recognized and the manipulation of the current shape then
involves replacing the recognized lhs by the right-hand-side (rhs) of the shape rule in the
shape under investigation. Recognition necessarily applies under some transformation, for
example, a similarity transformation, and the resulting manipulation must occur under the
same transformation for both lhs and rhs. That is, applying a rule a ® b to a given shape s
involves determining a transformation f such that f(a) is a part of s (f(a) £ s), following which
s is replaced by s – f(a) + f(b).

A shape grammar generally defines a collection of rules together with an initial shape; then,
the language defined by a shape grammar is the set of shapes generated by the rules from
the initial shape. However, from a user’s point of view, any collection of rules that serves a
particular purpose can be considered a shape grammar, whether or not it requires a
particular initial shape or, instead, can be applied to a wide variety of (initial) shapes.

Sortal grammars extend on shape grammars. Where shape grammars commonly rely on a
combination of line segments and labelled points, sortal grammars take a modular
representational approach, allowing for a wide variety of geometric and non-geometric
elements to be included in the specification of shape rules and grammars. Sortal grammars
utilize sortal structures as representational structures, where these structures are defined
as formal compositions of other, primitive, sortal structures, termed sorts. As such, sortal
grammars constitute a class of formalisms for design grammars and benefit from the fact
that every component sort specifies a partial order relationship on its individuals and forms,
defining both the matching operation and the arithmetic operations for rule application.

A shape grammar interpreter is the engine that supports the application of shape rules,
including recognition and manipulation. The SortalGI plug-in for Grasshopper encapsulates
the SortalGI sortal/shape grammar interpreter and makes part of its functionality available
within Rhino/Grasshopper. It allows the user to create and apply shape and description
rules within the Grasshopper environment.

Plug-in development by Bianchi Dy
System development by Bui Do Phuong Tung
Under the supervision of Rudi Stouffs

2. Installation and update
Installation takes three steps. The first step only needs to be performed once and only if you
are using Rhino 5. The second step is also required for any major update (e.g., from v0.3.1 to
v0.4.0), while the third step should be performed for any update, though in case of a minor
update (e.g., from v0.3.0 to v0.3.1), you may be able to simply use the SGI Update
component (see below).

You can find the latest update from Food4Rhino (http://www.food4rhino.com/app/sortalgi-
shape-grammar-interpreter) or sortal.org (http://www.sortal.org/downloads/plugin.html)

Step 1:Installing GhPython and updating Rhino’s Module Search Paths
If you are using Rhino 5, you must install GhPython onto Rhinoceros Grasshopper. This is not
necessary if you are using Rhino 6.

a) Download the GhPython Grasshopper Assembly file (gha) from Food4Rhino:
http://www.food4rhino.com/app/ghpython

b) Open Rhino and Grasshopper.
c) In Grasshopper, choose File > Special Folders > Components folder. Save the gha file

in this folder.
d) In the finder window, right-click the gha file > Properties and make sure there is no

"blocked" text.
e) Type EditPythonScript in the Rhino Command box.
f) In the Rhino Python Editor window, select 'Options...' from the Tools menu.
g) Add the Plug-ins\IronPython\Lib\site-packages folder of your Rhino installation

folder into the 'Module Search Paths'.
h) Close Grasshopper and Rhino completely.

Step 2: Installing the SortalGI library
As the SortalGI library may change with a major update (e.g., from v0.3.1 to v0.4.0) and
there may be dependencies between the plug-in and such changes, it is strongly advised to
re-install the SortalGI library with every major update. This installation may be achieved in
one of two ways.

a) If you have not yet done so, download the latest SortalGI update Food4Rhino
(http://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter) or sortal.org
(http://www.sortal.org/downloads/plugin.html) and unzip the file.

b) (in Windows) Run the setup widget inside the folder ‘sortal-setup’.
The computer may prompt for whether to allow the widget to make changes; click
‘Yes’ or ‘Allow’. Wait for it to finish installing the packages.

c) If you are unable to run the ‘setup’ widget, you may manually copy-paste the files in
their respective locations:

i. Copy the content of the folder ‘sortal-setup\site-packages’ into the location
C:\Program Files\Rhinoceros 5.0 (64-bit)\Plug-ins\IronPython\Lib\site-
packages or equivalent on your computer

ii. Copy the folder ‘sortal’ (inside ‘sortal-setup\sortal-packages’) into the
location C:\Program Files\ Rhinoceros 5.0 (64-bit)\Plug-ins\IronPython\Lib

Step 3: Installing the SortalGI plug-in
With any update of the SortalGI plug-in, you must update the SortalGI components in
Grasshopper. You can:

a) Open Rhino and Grasshopper.
b) In Grasshopper, choose File > Special Folders > User Objects folder.
c) Copy all files from the folder 'components' and paste these into the folder

'UserObjects'.
The result should be automatically reflected in Grasshopper. There should be an ‘SGI’ in the
Grasshopper Components Tab Panel and if you select the tab it should include all the User
Objects. If not, you may want to restart Grasshopper and Rhino for the changes to take
effect.

In case of a minor update (e.g., from v0.3.0 to v0.3.1), you can also use the SGI Update
component to update the SortalGI components in the Grasshopper Components Tab Panel
as well as in the current parametric model (see section 3. Starting on a SortalGI-based
parametric model).

3. Starting on a SortalGI-based parametric model

Creating a new parametric model using SortalGI components
Before adding any other SGI component, you should first add the SGI Setup component.
This component initializes the SortalGI engine and makes all functionality available to the
model.

If, instead, you add the SGI Setup component after other SGI components, you should use
CTRL+B in order to ensure the SGI Setup component is executed before all other
components.

SGI Setup

The SGI Setup component initializes the SortalGI engine and allows for some global settings.
Inputs:

- displacementX: optional displacement value along the X-axis for the purpose of
translating any shape resulting from a rule application; if no displacement value is
specified, then the rule application will automatically derive the translation distance
from the bounding box of the shape (see section 7. Applying a rule)

- displacementY: optional displacement value along the Y-axis for the purpose of
translating and spacing multiple shapes resulting from a rule application; if no
displacement value is specified, then the rule application will automatically derive
the translation distance from the bounding box of the shape (see section 7. Applying
a rule)

- text size: the text size to visualize any labels or shape descriptions that are attributes
to geometries resulting from a SortalGI component

- descriptions: a list of shape description types, each identified by its name (see
section 8. Specifying shape descriptions for a specification of descriptions)

Outputs:
- check: True or False value indicating success of the setup

Opening an existing parametric model using SortalGI components
If you find any errors with SortalGI components upon opening an existing parametric model,
these might be caused by having older components embedded in the existing model when
compared with the SortalGI version installed.

Firstly, check the version number of the specific component. If it is an older (or different)
version number, you can use the SGI Update component to automatically update this and
any other components to the installed version. Note that any embedded component in the
parametric model contains its own Python code and updating the SortalGI components in
the ‘UserObjects’ folder does not automatically update the embedded components in the
model. The SGI Update component will update both the SortalGI components in the
‘UserObjects’ folder (if instructed to do so) and the embedded components in the current
parametric model.

Secondly, if the version number does correspond to the installed version, instead, the
problem may relate to a difference in inputs and/or outputs between the specific
embedded component in the model and the component present in the Grasshopper
Components Tab Panel. In this case, you must replace the embedded component and all its
connections using the available component.

SGI Update

The SGI Update component updates the Python codes in the embedded components in the
parametric model to the specified SortalGI version. If specified, it will also update the
components in the Grasshopper Components Tab Panel.
Inputs:

- sourceDirectory: an optional source directory where the SortalGI components should
be copied from and into the ‘UserObjects’ folder; if you omit this source directory,
then only the Python codes of the embedded components in the parametric model
will be updated to the current SortalGI version as available in the Grasshopper
Components Tab Panel

- updateThisFile: True or False; setting this value to True will execute the SGI Update
component; setting it to False will keep it from executing over and over again

Outputs:
- success: True or False value indicating success of the update

4. Creating a shape object

Creating shape objects using the SGI Shape or SGI dShape components serves different
purposes. A shape object can be used to define the left-hand-side or the right-hand-side of a
rule. Rule application also requires a shape object as the input shape and, optionally, as the
input subshape (see section 7. Applying a rule).

A shape object may consist of points, line segments and plane segments, circles and ellipses,
circular arcs and quadratic Bezier curves, as well as shape descriptions. Points may have
labels or shape descriptions assigned as attributes. The Text Point component allows one to
assign a label or shape description as a text to a point. Note that the resulting geometry is
only recognized by any of the SGI components, specifically SGI Shape or SGI dShape. Other
Grasshopper components will not recognize the text point.

The SGI Shape and SGI dShape components differ in the fact that the latter accepts shape
descriptions using an extra input, while the former does not.

Text Point

The Text Point component creates a labelled point object, that is, a point with a label or
shape description as attribute.
Inputs:

- P: a point specifying the position of the object
- label: a text specifying the label or shape description of the object (see section 8.

Specifying shape descriptions for a specification of descriptions)
Outputs:

- G: the resulting text object

SGI Shape

The SGI Shape component creates a shape object from a geometry and an optional
reference point.
Inputs:

- G: a geometry of points, text points, lines, polylines, (flat) surfaces, meshes,
boundary representations, circles, ellipses, (circular) arcs and/or quadratic Bezier
curves; any part of the geometry not recognized will be ignored

- refP: an optional reference point; if specified, the geometry will be moved from the
reference point to the origin, allowing a shape that will serve as the left-hand-side or
right-hand-side to a rule to be drawn or specified spatially separated from the other
side of the rule

Outputs:
- S: the resulting shape object
- G: the geometry of the shape object

SGI dShape

The SGI dShape component creates a shape object from a geometry, descriptions and an
optional reference point. The descriptions may be omitted, so may be the geometry, though
not both at the same time.
Inputs:

- G: a geometry of points, text points, lines, polylines, (flat) surfaces, meshes,
boundary representations, circles, ellipses, (circular) arcs and/or quadratic Bezier
curves; any part of the geometry not recognized will be ignored

- D: one or more shape descriptions, each item preceded by the shape description
type (name) and a colon; multiple shape descriptions of the same type can be
combined into a single item by separating them with a vertical bar

- refP: an optional reference point; if specified, the geometry will be moved from the
reference point to the origin, allowing a shape that will serve as the left-hand-side or
right-hand-side to a rule to be drawn or specified spatially separated from the other
side of the rule

Outputs:
- S: the resulting shape object
- G: the geometry of the shape object
- D: the shape descriptions of the shape object (note that any shape description that is

assigned as an attribute to part of the geometry is not included as it already forms
part of the geometry)

SGI S2G

The SGI S2G component converts any shape object into its geometry and shape
descriptions.
Inputs:

- S: a shape object
Outputs:

- G: the geometry of the shape object
- D: the shape descriptions of the shape object (note that any shape description that is

assigned as an attribute to part of the geometry of the shape object is not included
as it already forms part of the geometry)

5. Manipulating a shape object
Following the creation of a shape object, various geometrical operations are available as
SortalGI components to act upon a shape object; e.g., to translate/move a shape, rotate a
shape, reflect/mirror a shape and scale a shape. Each of these components takes as input a
shape object and any additional data required to inform and apply the transformation, and
returns the resulting shape object as well as the corresponding geometry and shape
descriptions. Their operation is quite identical to the corresponding Grasshopper
components, except that they act upon a shape object.

In addition, there are SortalGI components to union/sum two shapes, intersect/take the
product of two shapes and take the difference of one shape with respect to another.

SGI Move Shape

The SGI Move Shape component moves a shape object along a vector. This component is
very useful to ensure the visualization of shape objects resulting from rule application do
not overlap and are properly spaced (see section 7. Applying a rule).
Inputs:

- S: a shape object
- T: a translation vector

Outputs:
- S: the resulting shape object
- G: the geometry of the resulting shape object
- D: the shape descriptions of the resulting shape object

SGI Rotate Shape

The SGI Rotate Shape component rotates a shape object about the normal vector of a base
plane by a specified angle.
Inputs:

- S: a shape object
- A: a rotation angle in radians
- P: a rotation plane

Outputs:
- S: the resulting shape object
- G: the geometry of the resulting shape object
- D: the shape descriptions of the resulting shape object

SGI Mirror Shape

The SGI Mirror Shape component mirrors a shape about a base plane.
Inputs:

- S: a shape object

- P: a mirror plane
Outputs:

- S: the resulting shape object
- G: the geometry of the resulting shape object
- D: the shape descriptions of the resulting shape object

SGI Scale Shape

The SGI Scale Shape component scales a shape object about a center of scaling uniformly by
a specified scaling factor.
Inputs:

- S: a shape object
- C: a center of scaling
- F: a scaling factor

Outputs:
- S: the resulting shape object
- G: the geometry of the resulting shape object
- D: the shape descriptions of the resulting shape object

SGI Sum

The SGI Sum component sums (combines) two shape objects together.
Inputs:

- S1: a shape object
- S2: another shape object

Outputs:
- S: the resulting shape object
- G: the geometry of the resulting shape object
- D: the shape descriptions of the resulting shape object

SGI Product

The SGI Product component determines the product (intersection) of two shape objects.
Inputs:

- S1: a shape object
- S2: another shape object

Outputs:
- S: the resulting shape object
- G: the geometry of the resulting shape object
- D: the shape descriptions of the resulting shape object

SGI Difference

The SGI Difference component takes the difference (complement) of one shape object with
respect to another shape object.
Inputs:

- S1: a shape object
- S2: another shape object

Outputs:
- S: the resulting shape object
- G: the geometry of the resulting shape object
- D: the shape descriptions of the resulting shape object

6. Creating a rule
A rule is conceptually specified in the form lhs ® rhs, where the left-hand-side (lhs) of the
rule specifies the pattern to be matched under some transformation and the right-hand-side
(rhs) specifies the resulting pattern that replaces the matched pattern under the same
transformation. That is, applying a rule a ® b to a given shape s involves determining a
transformation f such that f(a) is a part of s (f(a) £ s), following which s is replaced by s – f(a)
+ f(b).

A shape rule is commonly understood to imply that both lhs and rhs constitute a geometry,
possibly including non-geometric attributes, e.g., labels or descriptions. A description rule,
then, implies that both lhs and rhs constitute a shape description of the same shape
description type. Combining a shape rule with one or more description rules specifies a
compound rule, where the different component rules operate in parallel, although they may
interact with each other.

A rule object specifies such a compound rule although it can be used to specify a shape rule
or, alternatively, one or more description rules. That is, which component rules are included
depends on the shape objects that are provided as lhs and rhs of the (compound) rule. If the
lhs does not include any geometry, then the rhs may not include any geometry either, as no
matching transformation can be determined from an empty shape. With respect to shape
descriptions, if either the lhs or rhs includes a shape description type but the other side does
not, then an empty shape description of that type is automatically included in the other side
to ensure a full correspondence between shape description types (see section 6. Creating a
rule).

Two types of rules are distinguished, parametric rules and non-parametric rules. The latter
are the easiest to understand. In the case of a non-parametric rule, the pattern specified by
the lhs of the rule must match a part of the given shape under a similarity transformation
(translation, rotation, reflection and/or uniform scaling). That is, when matching for a
square of line segments, any square of line segments from the given shape will do, even if
these line segments extend beyond the corner points of the square. The same applies when
matching for a rectangle, however, only rectangles with the same ratio between length and
width will be matched.

A parametric rule matches a much larger variety of shapes. In principle, when matching a
triangle of line segments, any triangle of line segments in the given shape will be matched,
irrespective of its shape. The corresponding transformation is a topological transformation
though there is no mathematical representation for such a transformation (unlike for a
similarity transformation). However, some constraints do apply. Specifically, parallel and
perpendicular lines are automatically identified in the lhs and considered as constraints for
matching. Thus, specifying a right-angled triangle as the lhs will only match right-angled
triangles in the given shape, however, specifying an equilateral or isosceles triangle as the
lhs will have no effect, any triangle in the given shape will be matched.

While in some cases it may be difficult to predict the exact matching results of the lhs of a
parametric rule, the matching mechanism broadly follows the following steps:

1. Identify all (infinite) lines that carry any line segment in the lhs.

2. Identify all (infinite) lines that carry any line segments in the given shape.
3. Enumerate all combinations of lines from the given shape that match the number of

lines for the lhs.
4. Eliminate all combinations that do not preserve parallelism and perpendicularity

between lines as specified by the lhs.
5. Identify all intersection points of (infinite) lines in the lhs and note whether the

intersection point falls inside, outside or is an endpoint of any line segment on each
infinite line.

6. Do the same for the remaining combinations of (infinite) lines for the given shape:
a. Eliminate any combinations where an inside intersection point for the lhs is

not matched with an inside intersection point for the given shape.
b. Eliminate any combinations where an intersection point that is an endpoint

for the lhs is not matched with an intersection point that is either an
endpoint or an inside point for the given shape.

7. For the lhs, Identify all endpoints of line segments on these (infinite) lines and note
their ordering also with respect to the intersection points.

8. Do the same for the given shape and eliminate any remaining combinations where
two intersection points in the lhs are contained within a single line segment and the
corresponding intersection points in the given shape are not.

SGI Rule

The SGI Rule component creates a non-parametric rule object from a left-hand-side (lhs)
and a right-hand-side (rhs), a name and a brief description. If a shape description type is
present as part of one shape object (lhs or rhs) but absent from the other shape object, an
empty shape description of that type is automatically added to the other shape object
within the rule.
Inputs:

- name: a rule name; this rule name should be unique
- desc: a brief explanation of the rule
- lhs: a shape object representing the left-hand-side of the rule
- rhs: a shape object representing the right-hand-side of the rule

Outputs:
- rule: the non-parametric rule object

SGI pRule

The SGI pRule component creates a parametric rule object from a left-hand-side (lhs) and a
right-hand-side (rhs), a name and a brief description. If a shape description type is present
as part of one shape object (lhs or rhs) but absent from the other shape object, an empty
shape description of that type is automatically added to the other shape object within the
rule.
Inputs:

- name: a rule name; this rule name should be unique
- desc: a brief explanation of the rule

- lhs: a shape object representing the left-hand-side of the rule
- rhs: a shape object representing the right-hand-side of the rule

Outputs:
- pRule: the parametric rule object

SGI Get Rule

The SGI Get Rule component retrieves a rule object (parametric or non-parametric) by its
given name.
Inputs:

- name: a rule name
Outputs:

- rule: a rule object (or null)

SGI Rule Info

The SGI Rule Info component deconstructs any rule object (parametric or non-parametric)
into its left-hand-side and right-hand-side shape objects and provides a multi-line text
containing the rule object’s GUID, name and description.
Inputs:

- rule: a rule object
Outputs:

- info: a multi-line text including the rule’s GUID, name and description
- lhsS: the left-hand-side shape object
- rhsS: the right-hand-side shape object

7. Applying a rule
Applying a rule to a given shape object involves determining a transformation under which
the left-hand-side (lhs) of the rule is a part of the given shape. That is, rule application
involves two steps: recognition and manipulation; recognition implies matching the lhs of
the rule under some transformation to a part of the given shape and manipulation implies
replacing the recognized lhs by the right-hand-side (rhs) of the shape rule under the same
transformation.

Obviously, the lhs of a shape rule may match multiple parts of the same given shape. These
matches may correspond to different but similar parts, e.g., if the lhs of a non-parametric
rule specifies a square, the rule will match any square in the given shape independent of its
location, rotation, reflection or scale (a similarity transformation). However, these matches
may also apply to the same part in different ways. Again, if the lhs of a non-parametric rule
specifies a square, which has 90° rotational symmetry, and the rhs specifies the same
square moved diagonally, then any square in the given shape will amount to four matches
as the square may be moved into any of its four diagonal directions.

The SortalGI plug-in distinguishes three rule application components: the first one, SGI
Apply, applies only a single match (either randomly selected or specified by its index), while
the second one, SGI Apply All, applies all matches in parallel, returning as many results as
there are matches. The third one, SGI Derive, takes a series of rules as input and applies
each rule in sequence, returning all intermediate results as well as the final result. All three
components accept both a shape object and an optional subshape object. If specified, the
latter must be a subshape, that is, part of, the former. If a subshape object is specified then
recognition/matching is restricted to the subshape. This allows one to reduce the number of
matches where appropriate. Manipulation will always apply to the entire shape object.

Every resulting shape is accompanied by a translation vector. In the case of SGI Apply, the
translation vector allows the resulting shape to be visualized aside from the original shape,
along the X-axis. In the case of SGI Apply All, the translation vectors allow the resulting
shapes to be visualized one above the other, along the Y-axis, and aside from the original
shape, along the X-axis. In the case of SGI Derive, the translation vectors allow the resulting
shapes to be visualized one aside from the other, and from the original shape, along the X-
axis. The extent of the translation vector is specified by the displacementX and
displacementX values provided to the SGI Setup component or, if no value is provided, by
the bounding box of the original shape (see section 3. Starting on a SortalGI-based
parametric model).

All rule application components accept parametric and non-parametric rules.

SGI Apply

The SGI Apply component determines all possible matches but applies only a single one,
either randomly selected or as specified by an index value.
Inputs:

- rule: a rule object
- S: a shape object to apply the rule to
- subS: an optional shape object to restrict matches to; if specified, this shape object

must be a subshape, that is, part of, the shape object S
- i: an optional index to select which match to consider for rule application; a value of

-1 (default) selects a random match, any number outside the index range yields the
last one among the list of matches

Outputs:
- S: the resulting shape object upon rule application; if no match is found then the

original shape is returned
- G: the geometry of the resulting shape object
- D: the descriptions of the resulting shape object
- T: a translation vector to allow the resulting shape to be drawn next to the original

shape, along the X-axis
- success: True or False indicating whether a match was found or not

SGI Apply All

The SGI Apply All component determines and applies all possible matches.
Inputs:

- rule: a rule object
- S: a shape object to apply the rule to
- subS: an optional shape object to restrict matches to; if specified, this shape object

must be a subshape, that is, part of, the shape object S
Outputs:

- L: a list of resulting shape objects corresponding to the number of matches found; if
no match is found then the original shape is returned

- n: the number of matches found, corresponds to the length of the lists L and Ts
- Ts: a list of translation vectors to allow the resulting shapes to be drawn one above

the other, along the Y-axis, and next to the original shape, along the X-axis
- success: True or False indicating whether at least one match was found or not

SGI Derive

The SGI Derive component acts as a sequence of SGI Apply components. Given a list of rule
objects, it applies each in sequence.
Inputs:

- rules: a list of rule objects
- S: a shape object to apply the first rule to
- subS: an optional shape object to restrict the first match to, or a list of shape objects

to restrict consecutive matches to; if specified, the shape object must be a subshape,
that is, part of, the input shape of the respective rule object

- i: an optional index to select which matches to consider for rule application; a value
of -1 (default) selects a random match, any number outside the index range yields
the last one among the list of matches; may be specified as a list of indices

- runIt: True or False indicating whether to execute the component or not
Outputs:

- L: a list of resulting shape objects, one for each rule object; if no match is found for a
specific rule object then the input shape for that rule is returned

- n: the length of the lists L, Ts and success
- Ts: a list of translation vectors to allow the resulting shapes to be drawn one next to

the other and to the original shape, along the X-axis
- success: a list of True or False values indicating for each rule object whether at least

one match was found or not

8. Specifying shape descriptions
We use the term shape description to distinguish it from a rule description. The latter is a
textual description that is used to explain the purpose of a rule to the user; it is not
interpreted by the SortalGI engine. Shape descriptions, on the other hand, follow a strict
format that allows them to be interpreted and matched by the SortalGI engine (see
Appendix A. A formal notation for shape descriptions for an explication of the format).

Parametric shape descriptions
Shape descriptions are parametric in nature, that is, when adopted as the left-hand-side
(lhs) of a (shape) description rule, a shape description may contain one or more parameters
that can be matched onto parts of the description under investigation. When adopted as
the right-hand-side (rhs) of a (shape) description rule, a shape description may also contain
parameter references although the parameters should have already been specified in the
corresponding lhs, such that the value of the parameter reference in the rhs can be taken
from the matching of the lhs. Obviously, shape descriptions that do not form part of a shape
description rule should not contain any parameters or parameter references, otherwise
matching will necessarily fail.

Example (‘description’ is the description type name and ‘a’ is a parameter):
description: a

Shape description types
A single shape object or rule object may specify more than one description. For example,
one description may be used to constrain rule application while another may serve to count
the number of rule applications performed on the shape object. In order to be able to
correctly match shape descriptions belonging to the lhs and the rhs of the rule object, shape
descriptions must be typed, that is, each shape description that is not used as an attribute
to a point must be preceded by its type name (type name and description are separated by
a colon). Shape description types must be prescribed in the SGI Setup component (see
section 3. Starting on a SortalGI-based parametric model).
Multiple descriptions may share the same description type. These can be collected in a
single line, using a vertical bar to separate the various descriptions.

Examples:
min_width: 10
colors: “black” | “white”

Description literals
Literal values in description may be numbers, double quoted strings or predefined
keywords. The latter include e, nil, pi, true and false. e and nil are equivalent and represent
an ‘empty’ entity. Depending on the context, the ‘empty’ entity may be interpreted to
denote zero, an empty string or an empty tuple. The literals pi, true and false denote the
numbers ‘p’, 1 and 0, respectively.

Examples:
status: true
list: e

Description tuples
While shape descriptions are specified in textual form, they can be structured as nested
lists/tuples. Tuples should be enclosed using either parentheses, angle brackets or square
brackets. A top-level tuple may have the enclosing brackets omitted. The entities within a
tuple should be separated using either commas or semicolons. Again, a top-level tuple may
have the separating marks omitted.

Examples:
segment: <(0, 0), (1, 0)>
cubes: (“l:”, 10, “c:”, (0, 0), “r:”, 0) (“l:”, 10, “c:”, (5, 5), “r:”, 45)

Description parameters
A description parameter is a variable term that is specified by an identifier (any sequence of
letters, digits and/or underscores starting either with a letter or underscore) and embedded
in the lhs of a description rule. Under rule application, the parameter will be matched to a
literal or a tuple. If the parameter forms part of a string expression (see “String expressions”
below), this literal can be any part of a literal string. If the parameter forms part of a tuple, it
matches a specific element of the tuple, unless it is signified by a kleene star (‘*’) or a kleene
plus (‘+’), in which case it can match any subsequence of elements of the tuple, respectively,
including or excluding an empty subsequence. The use of a kleene star or kleene plus
signifier allows for the matching of variable length tuples.

Examples:
fixed_length: <“Fixed”, var1> <var2, var3> var4
variable_length: (0, 0) (x1, y1) remainder*

Parameter conditionals
Any description parameter may be specified a conditional that constrains the possible
values of this parameter. The conditional must follow the parameter and both must be
separated only by a question mark (‘?’). The conditional may be either enumerative or
equational, or specify a range. An enumerative conditional explicates a finite set of possible
values. This set must contain either all numbers or all (double quoted) strings, and the set
must be enclosed using curly brackets. An equational conditional specifies a numeric
equality or inequality on the parameter, in the form of a conditional operator (‘=’, ‘<>’, ‘<’,
‘<=’, ‘>’, or ‘>=’) and operand. The operand must be either a number or a numerical
expression (see “Numerical expressions” below) operating on numbers, parameters—
previously defined—functions (see “Functions” below) and/or references (see “References”
below). Neither strictly enumerative, nor strictly conditional, it is possible to specify a range
of numeric values using a minimum and maximum value enclosed in square brackets.

Examples:
yard: value?{nil, “default”}
rooms: <nrooms?>2, rooms>
range: a?[0, 10]

Numerical expressions
A numerical expression can be embedded in a parameter conditional (in the lhs of a
description rule) or in the rhs of a description rule. A numerical expression can operate on
literal keywords, numbers, numerical functions (see “Functions” below), parameters and
references (see “References” below). Numerical expressions may include the operators plus
(‘+’), minus (‘–‘), times (‘*’), divided-by (‘/’), modulo (‘%’) and to-the-power-of (‘^’), with the
usual operator precedence rules applying and the use of parentheses to override these rules
where necessary. Other operations are available in the form of numerical functions.

Example (‘vol’ and ‘length’ specify parameter references) :
volume: vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3

String expressions
A string expression in the lhs of a description rule enables the identification of substrings in
the matching process. Here, a string expression is a concatenation of literals and parameters
(with or without conditional). A parameter can match any substring, conditioned by the
literal components (and the conditional, if present). A concatenation of two parameters,
without a literal separating the two parameters, would not be possible, unless the first
parameter has an enumerative conditional.
A string expressions in the rhs of a description rule can include literals, parameter
references (see “References” below), numerical expressions (enclosed in parentheses) and
functions returning either numbers or strings (see “Functions” below). The result is the
concatenation of all components upon their evaluation into literal numbers or strings.

Examples (the two lines below may form the lhs and rhs of the same description rule):
be: be1 be20.“, ”.be21.“-rafter beam in front, ”.be22.“-rafter beam in back” “with ”.c?=(be21 +
be22).“ columns”
be: be1 be20.“, ”.be21.“-rafter beam abutting ”.be22 “with ”.(c + 1).“ columns”

Tuple expressions
Tuple expressions allow one to append or prepend an entity to a tuple, join two tuples or
add two tuples. The operations to append, prepend and join all take the same format: two
operands separated by a space. The appropriate interpretation is arrived at by looking at
the structure of the two operands. If the entity shares a similar “structure” with the first
element of the tuple, e.g., both are numbers or both are a tuple of similar structure, then
the entity will be appended or prepended to the tuple depending on its position with
respect to the tuple. If both operands are (nested) tuples, and the elements of both tuples
have the same structure, then a join operation will be assumed, combining the elements
from both tuples in a new, single tuple. If no structural similarity exists, then the expression
will instead be interpreted as a tuple omitting enclosing brackets and separator.
Adding two tuples adds the respective entities: if both entities are numbers they are
summed; if both entities are strings they must be identical; if both entities are tuples and
have the same structure, then addition is applied recursively.

Examples (the latter also includes a function):
position: a + (1, 0)
positions: a last(a) + (0, 1)

Functions
Functions allow for additional operations on numbers, strings and tuples, or a combination
thereof. A function returns a single value from any one of these three entity types. Strictly
numerical functions include sqrt, sin, cos and tan, asin, acos and atan, taking a single number
as argument and returning a number. Functions operating on strings include determining
the length of a string and determining a left and right substring, with the length of the
substring specified as an additional argument to the function.
Functions operating on tuples include determining the length of a tuple, retrieving the first
or last element of a tuple, the minimum (min) and maximum (max) value inside a tuple,
retrieving a tuple of only unique elements, a tuple of pairs extracting consecutive elements
pairwise from the operand tuple, a tuple of pairs (segments) such that the ith pair is made
up of the ith and (i+1)th elements of the operand tuple, a tuple of tuples identifying loops in
the operand tuple and a tuple of tuples representing an adjacencies matrix. The latter
function takes two arguments, a tuple of ‘enclosures’ and a tuple of ‘connecting’ elements.
Tuples of numbers can be considered as vectors, currently only vectors of length two or
three are considered. Functions on vectors require the different vectors to have the same
length. These functions include determining the magnitude (mag) of a vector or the distance
(also mag) or angle between two vectors, adding (vectoradd) or subtracting (vectorsubstract)
two vectors, taking the dotproduct or crossproduct of two vectors or scaling a vector by a
number (vectorscale).
Finally, a function to generate a random number takes as input a tuple of two or three
numbers, with the first two specifying the range and the optional third one the step. More
information on functions is provided in Appendix B. Description functions.

Examples:
positions: a (random(0,10,1), 0)

References
We distinguish three kinds of references. Firstly, parameter references are variable terms in
the rhs of a description rule that reference variable terms (parameters) in the lhs of the
same (or another) description rule. The value of the parameter reference in the rhs is the
value of the same parameter in the lhs upon the matching of the lhs.
Secondly, a description reference is similar to a parameter reference but references a
variable term in another description (that is part of the same rule). In such case, the
parameter name must be preceded by the description type name in order to identify the
appropriate description and parameter. Alternatively, rather than referencing a specific
parameter, the entire value of the description can be referenced using the term value.
Finally, a shape reference similarly references data from the shape rule component of the
rule. In order to reference shape data, you must refer to the element type name (see Shape
element types below). However, this will only work if there is only one element of the
specific type, otherwise the reference will be ambiguous. In the case of points, you can
disambiguate the point by additionally specifying its label, provided the point has a label
and the label is unique (see example below).

Example querying the positions of two points with given labels:
constraint: a?>=mag(point3D.value:labelD.value=”1”, point3D.value:labelD.value =”2”)

Shape element types and their available properties
Every geometric shape element type, except for circular arcs, is identified by two names.
The first one should be used within non-parametric rules and the second within parametric
rules (pRule). Note that circular arcs are not yet available within parametric rules and, if
specified, will be ignored.

Type Name Properties Value
points point3D value Position vector tuple*

pointP3D
line segments lineSeg3D

lineSegP3D
plane segments planeSeg3D

planesegP3D
circles circle3D

circleP3D
ellipses ellipse3D

ellipseP3D
circular arcs arc3D
quadratic Bezier curves bezier3D

bezierP3D
labels/descriptions as
point attribute

labelD value label or description string

*A vector tuple is a tuple of two or three numbers.

Appendix A. A formal notation for shape descriptions

The table below presents a formal notation for shape descriptions and the left-hand-side
(lhs) and right-hand-side (rhs) of shape description rules in Extended Backus-Naur-Form
(EBNF), including examples. The same non-terminals serve to define the production rules for
a description, an lhs and an rhs. Only when necessary are alternative production rules
defined for the same non-terminal; these are then identified by adding the terms
description, lhs and rhs, respectively, enclosed within angle brackets (‘<...>’), as a prefix to
the respective production rule.

typed-description = type-name ‘:’ description .
type-name = identifier .
description = description-entity | description-sequence .
description-entity = literal | top-level-tuple .
description-sequence = ‘&’ description-entity ‘&’ { description-entity ‘&’ } .
literal = keyword-literal | number | string .
keyword-literal = ‘e’ | ‘nil’ | ‘pi’ | ‘true’ | ‘false’.
number = [‘–’] digit-sequence [‘.’ digit-sequence] .
digit-sequence = digit { digit } .
digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ .
string = ‘“’ { string-character } ‘”’ .
string-character = any-character-except-quote | ‘\’ ‘“’ .
Example description-entity:
“centrally divided, double 1-rafter beam in front and back”
Example description-sequence:
&e&0&“nothing”&
top-level-tuple = tuple | unmarked-tuple .
tuple = ‘(’ tuple-entities ‘)’ | ‘<’ [tuple-entities] ‘>’ | ‘[’ [tuple-entities] ‘]’ .
<description>tuple-entities = tuple-entity-sequence .
<lhs>tuple-entities = tuple-entity-sequence | tuple-expression .
<rhs>tuple-entities = tuple-entity-sequence | tuple-expression .
tuple-entity-sequence = tuple-entity ({ ‘,’ tuple-entity } | { ‘;’ tuple-entity }) .
<description>tuple-entity = literal | tuple .
<lhs>tuple-entity = numeric-expression | string-expression | tuple .
<rhs>tuple-entity = numeric-expression | string-expression | tuple | function-returns-tuple .
unmarked-tuple = tuple-expression | tuple (tuple | keyword-literal) { tuple-entity } .
Example tuple:
(“l:”, 10, “c:”, (0, 0), “r:”, 0)
Example unmarked-tuple:
<" ", "O", "R0", "R1"> <"O", 1, 1, 1> <"R0", 1, 1, 0> <"R1", 1, 0, 1>
description-rule-side = description-rule-entity | description-rule-sequence .
<lhs>description-rule-entity = literal | parameter [‘?’ conditional] | string-expression | top-level-
tuple .
<rhs>description-rule-entity = numeric-expression | string-expression | function-returns-tuple |
tuple-expression .
description-rule-sequence = ‘&’ description-rule-entity ‘&’ { description-rule-entity ‘&’ } .
parameter = identifier .
identifier = (letter | underscore) { (letter | underscore | digit) } .
letter = ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’
| ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ | ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’

| ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’ .
underscore = ‘_’ .
Example <lhs>description-rule-entity:
<“Fixed”, var1> <var2, var3> remainder
Example description-rule-sequence:
&a1&a2&a3&a4&a5&a6&a7&a8&
conditional = enumeration | equation | range.
enumeration = ‘{’ (number-sequence | string-sequence) ‘}’ .
number-sequence = number { ‘,’ number } .
string-sequence = string { ‘,’ string } .
equation = comparator comparand .
comparator = ‘=’ | ‘<>’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ .
comparand = number | ‘(’ numeric-expression ‘)’ | parameter | reference .
range = ‘[‘ number ‘,’ number ‘]’ .
Example <lhs>description-rule-entity with enumeration:
yard?{nil, “default”}
Example <lhs>description-rule-entity with equation:
<nrooms?>2, rooms>
numeric-expression = term { addition-operator term } .
term = factor { multiplication-operator factor } .
factor = base { exponentiation-operator exponent } .
exponent = base .
base = keyword-literal | number | ‘(’ numeric-expression ‘)’ | function-returns-number |
parameter | reference .
exponentiation-operator = ‘^’ .
multiplication-operator = ‘*’ | ‘/’ | ‘%’ .
addition-operator = ‘+’ | ‘–’ .
Example numeric-expression:
vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3
string-expression = string-expression-entity { ‘.’ string-expression-entity } .
<lhs>string-expression-entity = literal | parameter [‘?’ conditional] .
<rhs>string-expression-entity = base | string | function-returns-string .
Example <rhs>string-expression:
“with ”.(c + 1).“ columns”
Example <lhs>string-expression:
“with ”.c?=(be21 + be22).“ columns”
<lhs>tuple-expression = tuple-append | tuple-prepend .
<rhs>tuple-expression = tuple-addition | tuple-extension .
tuple-append = { tuple-entity } parameter (‘*’ | ‘+’) tuple-entity { tuple-entity } [tuple-expression
] .
tuple-prepend = [tuple-expression] { tuple-entity } tuple-entity parameter (‘*’ | ‘+’) { tuple-
entity } .
tuple-addition = [parameter] ‘+’ basic-tuple-argument .
tuple-extension = { tuple-entity } parameter { tuple-entity } [tuple-expression] .
Example tuple-prepend:
h1 h2 H*
Example tuple-extension:
a1 last(a1) + (0, 1)
Example tuple-addition:
bedrooms + <1, [(“couple”, 0), (“double”, 0), (“single”, 1)]>

function = function-returns-number | function-returns-string | function-returns-tuple .
function-returns-number = numeric-function | length-function | string-function-untyped | tuple-
function-untyped | vector-function | round-function | random-function .
numeric-function = (‘sqrt’ | ‘sin’ | ‘cos’ | ‘tan’ | ‘asin’ | ‘acos’ | ‘atan’) ‘(’ numeric-expression ‘)’ |
‘atan2’ ‘(’ numeric-expression ‘,’ numeric-expression ‘)’ .
length-function = ‘length’ ‘(’ (string-argument | tuple-argument) ‘)’ .
<lhs>string-argument = string | function-returns-string | parameter | reference .
<rhs>string-argument = string-expression .
function-returns-string = string-function-returns-string | string-function-untyped | tuple-function-
untyped .
string-function-returns-string = (‘left’ | ‘right’) ‘(’ string-argument ‘,’ numeric-expression ‘)’ .
string-function-untyped = ‘eval’ ‘(’ string-argument ‘)’ .
tuple-function-untyped = (‘first’ | ‘last’ | ‘min’ | ‘max’) ‘(’ tuple-argument ‘)’ .
<lhs>tuple-argument = basic-tuple-argument .
<rhs>tuple-argument = basic-tuple-argument | tuple-expression .
basic-tuple-argument = tuple | function-returns-tuple | parameter | reference .
function-returns-tuple = tuple-function-returns-tuple | function-returns-vector | string-function-
untyped | tuple-function-untyped .
tuple-function-returns-tuple = (‘unique’ | ‘segments’ | ‘pairwise’ | ‘loops’) ‘(’ tuple-argument ‘)’
| ‘adjacencies’ ‘(’ tuple-argument ‘,’ tuple-argument ‘)’ .
function-returns-vector = two-vector-function | proj-vector-function | scale-vector-function |
round-function .
two-vector-function = (‘vectoradd’ | ‘vectorsubtract’ | ‘dotproduct’ | ‘crossproduct’) ‘(’ (vector-
argument ‘,’ vector-argument | two-vector-argument) ‘)’ .
vector-argument = ‘(‘ numeric-expression ‘,’ numeric-expression [‘,’ numeric-expression] ‘)’ |
function-returns-vector | parameter | reference .
two-vector-argument = ‘(‘ vector-argument ‘,’ vector-argument ‘)’ | parameter | reference .
proj-vector-function = ‘proj’ ‘(’ (vector-argument ‘,’ vector-argument ‘,’ vector-argument | three-
vector-argument) ‘)’ .
three-vector-argument = ‘(‘ vector-argument ‘,’ vector-argument ‘,’ vector-argument ‘)’ |
parameter | reference .
scale-vector-function = ‘vectorscale’ ‘(’ (vector-argument ‘,’ numeric-expression | vector-
number-argument) ‘)’ .
vector-number-argument = ‘(‘ vector-argument ‘,’ numeric-expression ‘)’ | parameter | reference
.
vector-function = (‘mag’ | ‘angle’) (‘(’ vector-argument ‘,’ vector-argument ‘)’ | ‘(’ two-vector-
argument ‘)’) .
round-function = ‘round’ ‘(‘ (numeric-expression | vector-argument ‘)’ .
random-function = ‘random’ ‘(’ vector-argument ‘)’ .
Example function-returns-number:
length(“room”)
Example function-returns-tuple:
adjacencies(a4, a5 a6)
reference = reference-to-lhs | reference-to-rhs .
reference-to-lhs = [‘lhs.’] reference-designator ‘.’ (‘value’ | parameter | property) [‘:’ filter] .
reference-to-rhs = ‘rhs.’ reference-designator ‘.’ property [‘:’ filter] .
reference-designator = identifier .
property = identifier .
filter = reference-designator ‘.’ property filter-operator (number | vector | string) .
filter-operator = ‘=’ | ‘<>’ | ‘<=’ | ‘>=’ .

vector = [rational] ‘(’ rational ‘,’ rational ‘,’ rational ‘)’ .
rational = [‘–’] digit-sequence [‘/’ digit-sequence] .
Example reference-to-lhs:
indices.value
Example reference-to-rhs:
rhs.sections.radius:labels.label=“S”

Appendix B. Description functions

Numerical functions

function input output
abs 1 number The absolute value of the number
sqrt 1 number The square root of the number
sin 1 number The sine value of the angle (in radians)
cos 1 number The cosine value of the angle (in radians)
tan 1 number The tangent value of the angle (in radians)
asin 1 number The inverse sine of the number (in radians)
acos 1 number The inverse cosine of the number (in radians)
atan* 1 number The inverse tangent of the number (in radians)
atan2* 2 numbers The inverse tangent of the ratio (in radians)
todegree 1 number The value converted from radians in degrees
toradian 1 number The value converted from degrees in radians
round 1 number The value rounded to the nearest integer

*atan versus atan2:
- atan takes 1 input and returns a result from quadrants 1 and 4
- atan2 takes 2 inputs (u, v) that specify a ratio u/v and returns a result from all quadrants
For example:

u v x = u/v atan(x) atan2(u,v)
2 1 2 1.1071487177940904 1.1071487177940904
-2 1 -2 -1.1071487177940904 -1.1071487177940904
2 -1 -2 -1.1071487177940904 2.0344439357957027
-2 -1 2 1.1071487177940904 - 2.0344439357957027

String functions

function input output
length 1 string The length of the string
left 1 string and 1 number The left substring of the specified length
right 1 string and 1 number The right substring of the specified length

Tuple functions

function input output
length 1 tuple The number of elements in the tuple
first 1 tuple The first element of the tuple
last 1 tuple The last element of the tuple
min 1 tuple The element of the tuple with minimum value
max 1 tuple The element of the tuple with maximum value
unique 1 tuple A tuple of only unique elements
pairwise 1 tuple A tuple of pairs extracting consecutive elements

pairwise from the operand tuple;
e.g., (a, b, c, d) -> ((a, b), (c, d))

segments 1 tuple A tuple of overlapping pairs extracting
consecutive elements from the operand tuple;
e.g., (a, b, c, d) -> ((a, b), (b, c), (c, d))

loops 1 tuple A tuple of tuples identifying loops in the operand
tuple; e.g., (a, b, c, d, a, e, f, c) -> ((a, b, c, d), (c,
d, a, e, f)

adjacencies 2 tuples: a tuple of
“enclosures” and a tuple of
“connecting” elements

A tuple of tuples representing an adjacency
matrix

random 1 tuple: either 2 or 3
numbers

A random number within the range specified by
the first two operands; the optional third
operand is considered as a step value for the
random number generation

round 1 vector tuple* A vector tuple with each value rounded to the
nearest integer

mag 2 vector tuples* The distance between the two vectors
angle 2 vector tuples* The angle between the two vectors

(counterclockwise angle from the first to the
second vector) (in radians)

proj 3 vector tuples*: a direction
vector, a root vector and a
position vector

A vector tuple representing the projection of the
position vector on the line specified by the
direction vector and root vector

vectoradd 2 vector tuples* A vector tuple representing the sum of the two
vectors

vectorsubtract 2 vector tuples* A vector tuple representing the difference of the
two vectors

vectorscale 1 vector tuple* and 1
number

A vector tuple representing the product of the
vector and the scalar

dotproduct 2 vector tuples* The number resulting from the dot product of
the two vectors

crossproduct 2 vector tuples* A vector tuple representing the cross product of
the two vectors

*A vector tuple is a tuple of two or three numbers; any function accepting (one or more)
vector tuples will also accept a single tuple collecting all operands

Appendix C: FAQ

1. I get a warning or error that makes no sense to me. What can I do?
Please recompute the Grasshopper model (F5) or reconnect an input to the SGI Setup
component to force this component to recompute. This may resolve the issue; sometimes, a
disconnect may occur between the Grasshopper model and the SortalGI engine, which may
result in a warning or error with little or no relation to the actual data.

2. Can I get some help?
You can post a message on the SortalGI forum (http://sortal.org/feedback/) or e-mail
stouffs@sortal.org

