
SortalGI	plug-in	for	Grasshopper 
User manual

SortalGI	version	0.5	
Manual	update	25	February	2019	
Wri=en	by	Rudi	Stouffs	

Table of content

1. About the SortalGI plug-in 2

2. Installa=on and update 3

3. Star=ng on a SortalGI-based parametric model 5

4. Crea=ng a shape object 7

5. Manipula=ng a shape object 10

6. Crea=ng a rule 13

7. Applying a rule 16

8. Specifying shape descrip=ons 20

9. Specifying predicates 27

10. Specifying direc=ves 28

Appendix A. A formal nota=on for shape descrip=ons 29

Appendix B. Descrip=on func=ons 33

Appendix C: FAQ 36

1. About the SortalGI plug-in

A	shape	rule	combines	a	specificaEon	of	recogniEon	and	manipulaEon.	A	shape	rule	is	
commonly	specified	in	the	form	lhs	→	rhs,	where	the	leJ-hand-side	(lhs)	of	the	rule	specifies	
the	pa=ern	to	be	recognised	and	the	manipulaEon	of	the	current	shape	then	involves	
replacing	the	recognised	lhs	by	the	right-hand-side	(rhs)	of	the	shape	rule	in	the	shape	under	
invesEgaEon.	RecogniEon	necessarily	applies	under	some	transformaEon,	for	example,	a	
similarity	transformaEon,	and	the	resulEng	manipulaEon	must	occur	under	the	same	
transformaEon	for	both	lhs	and	rhs.	That	is,	applying	a	rule	a	→	b	to	a	given	shape	s	involves	
determining	a	transformaEon	f	such	that	f(a)	is	a	part	of	s	(f(a)	≤	s),	following	which	s	is	
replaced	by	s	–	f(a)	+	f(b).	

A	shape	grammar	generally	defines	a	collecEon	of	rules	together	with	an	iniEal	shape;	then,	
the	language	defined	by	a	shape	grammar	is	the	set	of	shapes	generated	by	the	rules	from	
the	iniEal	shape.	However,	from	a	user’s	point	of	view,	any	collecEon	of	rules	that	serves	a	
parEcular	purpose	can	be	considered	a	shape	grammar,	whether	or	not	it	requires	a	
parEcular	iniEal	shape	or,	instead,	can	be	applied	to	a	wide	variety	of	(iniEal)	shapes.	

Sortal	grammars	extend	on	shape	grammars.	Where	shape	grammars	commonly	rely	on	a	
combinaEon	of	line	segments	and	labelled	points,	sortal	grammars	take	a	modular	
representaEonal	approach,	allowing	for	a	wide	variety	of	geometric	and	non-geometric	
elements	to	be	included	in	the	specificaEon	of	shape	rules	and	grammars.	Sortal	grammars	
uElise	sortal	structures	as	representaEonal	structures,	where	these	structures	are	defined	as	
formal	composiEons	of	other,	primiEve,	sortal	structures,	termed	sorts.	As	such,	sortal	
grammars	consEtute	a	class	of	formalisms	for	design	grammars	and	benefit	from	the	fact	
that	every	component	sort	specifies	a	parEal	order	relaEonship	on	its	individuals	and	forms,	
defining	both	the	matching	operaEon	and	the	arithmeEc	operaEons	for	rule	applicaEon.	

A	shape	grammar	interpreter	is	the	engine	that	supports	the	applicaEon	of	shape	rules,	
including	recogniEon	and	manipulaEon.	The	SortalGI	plug-in	for	Grasshopper	encapsulates	
the	SortalGI	sortal/shape	grammar	interpreter	and	makes	part	of	its	funcEonality	available	
within	Rhino/Grasshopper.	It	allows	the	user	to	create	and	apply	shape	and	descripEon	rules	
within	the	Grasshopper	environment.	

Plug-in	development	by	Bianchi	Dy	
System	development	by	Bui	Do	Phuong	Tung	
Under	the	supervision	of	Rudi	Stouffs	

2. Installa=on and update

InstallaEon	takes	three	steps.	The	first	step	only	needs	to	be	performed	once.	The	second	
step	is	also	required	for	any	major	update	(e.g.,	from	v0.4.1	to	v0.5.0),	while	the	third	step	
should	be	performed	for	any	update,	though	in	case	of	a	minor	update	(e.g.,	from	v0.4.0	to	
v0.4.1),	you	may	be	able	to	simply	use	the	SGI	Update	component	(see	below).	

You	can	find	the	latest	update	from	Food4Rhino	(h=p://www.food4rhino.com/app/sortalgi-
shape-grammar-interpreter)	or	sortal.org	(h=p://www.sortal.org/downloads/plugin.html)	

Step 1:Installing GhPython and upda=ng Rhino’s Module Search Paths
If	you	are	using	Rhino	5,	you	must	install	GhPython	onto	Rhinoceros	Grasshopper.	This	is	not	
necessary	if	you	are	using	Rhino	6.	However,	for	both	Rhino	5	and	Rhino	6,	you	must	update	
Rhino’s	Module	Search	Paths	and	enable	Frames	(steps	b	and	e-j).	

a) Download	the	most	recent	GhPython	Grasshopper	Assembly	file	(gha)	from	
Food4Rhino:	h=p://www.food4rhino.com/app/ghpython	

b) Open	Rhino	and	Grasshopper.	
c) In	Grasshopper,	choose	File	>	Special	Folders	>	Components	folder.	Save	the	gha	file	

in	this	folder.	
d) In	the	finder	window,	right-click	the	gha	file	>	ProperEes	and	make	sure	there	is	no	

"blocked"	text.	
e) Type	EditPythonScript	in	the	Rhino	Command	box.	
f) In	the	Rhino	Python	Editor	window,	select	'OpEons...'	from	the	Tools	menu.	
g) Add	the	Plug-ins\IronPython\Lib\site-packages	folder	of	your	Rhino	installaEon	

folder	into	the	'Module	Search	Paths'.	
h) Switch	from	the	‘Files’	tab	to	the	‘Script	Engine’	tab	(in	the	Python	OpEons	window).	
i) Check	the	‘Frames	Enabled’	opEon	and	click	‘OK’.	
j) Close	Grasshopper	and	Rhino	completely.	

Step 2: Installing the SortalGI library
As	the	SortalGI	library	may	change	with	a	major	update	(e.g.,	from	v0.4.1	to	v0.5.0)	and	
there	may	be	dependencies	between	the	plug-in	and	such	changes,	it	is	strongly	advised	to	
re-install	the	SortalGI	library	with	every	major	update.	This	installaEon	may	be	achieved	in	
one	of	two	ways.	

a) If	you	have	not	yet	done	so,	download	the	latest	SortalGI	update	Food4Rhino	(h=p://
www.food4rhino.com/app/sortalgi-shape-grammar-interpreter)	or	sortal.org	(h=p://
www.sortal.org/downloads/plugin.html)	and	unzip	the	file.	

b) (in	Windows)	Run	the	setup	widget	inside	the	folder	‘sortal-setup’. 
The	computer	may	prompt	for	whether	to	allow	the	widget	to	make	changes;	click	
‘Yes’	or	‘Allow’.	Wait	for	it	to	finish	installing	the	packages.	

c) If	you	are	unable	to	run	the	‘setup’	widget,	you	may	manually	copy-paste	the	files	in	
their	respecEve	locaEons:	
i. Copy	the	content	of	the	folder	‘sortal-setup\site-packages’	into	the	locaEon	C:

\Program	Files\Rhinoceros	5.0	(64-bit)\Plug-ins\IronPython\Lib\site-packages	
or	equivalent	on	your	computer	

ii. Copy	the	folder	‘sortal’	(inside	‘sortal-setup\sortal-packages’)	into	the	
locaEon	C:\Program	Files\	Rhinoceros	5.0	(64-bit)\Plug-ins\IronPython\Lib	

http://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter
http://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter
http://www.sortal.org/downloads/plugin.html
http://www.food4rhino.com/app/ghpython
http://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter
http://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter
http://www.sortal.org/downloads/plugin.html
http://www.sortal.org/downloads/plugin.html

Step 3: Installing the SortalGI plug-in
With	any	update	of	the	SortalGI	plug-in,	you	must	update	the	SortalGI	components	in	
Grasshopper.	You	can:	

a) Open	Rhino	and	Grasshopper.	
b) In	Grasshopper,	choose	File	>	Special	Folders	>	User	Objects	folder.	
c) Copy	all	files	from	the	folder	'components'	and	paste	these	into	the	folder	

'UserObjects'.	
The	result	should	be	automaEcally	reflected	in	Grasshopper.	There	should	be	an	‘SGI’	in	the	
Grasshopper	Components	Tab	Panel	and	if	you	select	the	tab	it	should	include	all	the	User	
Objects.	If	not,	you	may	want	to	restart	Grasshopper	and	Rhino	for	the	changes	to	take	
effect.	

In	case	of	a	minor	update	(e.g.,	from	v0.4.0	to	v0.4.1),	you	can	also	use	the	SGI Update	
component	to	update	the	SortalGI	components	in	the	Grasshopper	Components	Tab	Panel	
as	well	as	in	the	current	parametric	model	(see	secEon	3. Star=ng on a SortalGI-based
parametric model).	

3. Star=ng on a SortalGI-based parametric model

Crea=ng a new parametric model using SortalGI components
Before	adding	any	other	SGI	component,	you	should	first	add	the	SGI	Setup	component.	This	
component	iniEalises	the	SortalGI	engine	and	makes	all	funcEonality	available	to	the	model.	

If,	instead,	you	add	the	SGI Setup	component	aJer	other	SGI	components,	you	should	use	
CTRL+B	in	order	to	ensure	the	SGI Setup	component	is	executed	before	all	other	
components.	
	
SGI Setup

The	SGI Setup	component	iniEalises	the	SortalGI	engine	and	allows	for	some	global	semngs.	
Inputs:	

− displacementX:	opEonal	displacement	value	along	the	X-axis	for	the	purpose	of	
translaEng	any	shape	resulEng	from	a	rule	applicaEon;	if	no	displacement	value	is	
specified,	then	the	rule	applicaEon	will	automaEcally	derive	the	translaEon	distance	
from	the	bounding	box	of	the	shape	(see	secEon	7. Applying a rule)	

− displacementY:	opEonal	displacement	value	along	the	Y-axis	for	the	purpose	of	
translaEng	and	spacing	mulEple	shapes	resulEng	from	a	rule	applicaEon;	if	no	
displacement	value	is	specified,	then	the	rule	applicaEon	will	automaEcally	derive	
the	translaEon	distance	from	the	bounding	box	of	the	shape	(see	secEon	7. Applying
a rule)	

− text	size:	the	text	size	to	visualise	any	labels	or	shape	descripEons	that	are	a=ributes	
to	geometries	resulEng	from	a	SortalGI	component	

− descrip7ons:	a	list	of	shape	descripEon	types,	each	idenEfied	by	its	name	(see	
secEon 8. Specifying shape descrip=ons	for	a	specificaEon	of	descripEons)	

Outputs:	
− check:	True	or	False	value	indicaEng	success	of	the	setup	

Opening an exis=ng parametric model using SortalGI components
If	you	find	any	errors	with	SortalGI	components	upon	opening	an	exisEng	parametric	model,	
these	might	be	caused	by	having	older	components	embedded	in	the	exisEng	model	when	
compared	with	the	SortalGI	version	installed.	

Firstly,	check	the	version	number	of	the	specific	component.	If	it	is	an	older	(or	different)	
version	number,	you	can	use	the	SGI Update	component	to	automaEcally	update	this	and	
any	other	components	to	the	installed	version.	Note	that	any	embedded	component	in	the	
parametric	model	contains	its	own	Python	code	and	updaEng	the	SortalGI	components	in	
the	‘UserObjects’	folder	does	not	automaEcally	update	the	embedded	components	in	the	
model.	The	SGI Update	component	will	update	both	the	SortalGI	components	in	the	
‘UserObjects’	folder	(if	instructed	to	do	so)	and	the	embedded	components	in	the	current	
parametric	model.	

Secondly,	if	the	version	number	does	correspond	to	the	installed	version,	instead,	the	
problem	may	relate	to	a	difference	in	inputs	and/or	outputs	between	the	specific	embedded	

component	in	the	model	and	the	component	present	in	the	Grasshopper	Components	Tab	
Panel.	In	this	case,	you	must	replace	the	embedded	component	and	all	its	connecEons	using	
the	available	component.	

SGI Update

The	SGI Update	component	updates	the	Python	codes	in	the	embedded	components	in	the	
parametric	model	to	the	specified	SortalGI	version.	If	specified,	it	will	also	update	the	
components	in	the	Grasshopper	Components	Tab	Panel.	
Inputs:	

− sourceDirectory:	an	opEonal	source	directory	where	the	SortalGI	components	should	
be	copied	from	and	into	the	‘UserObjects’	folder;	if	you	omit	this	source	directory,	
then	only	the	Python	codes	of	the	embedded	components	in	the	parametric	model	
will	be	updated	to	the	current	SortalGI	version	as	available	in	the	Grasshopper	
Components	Tab	Panel	

− updateThisFile:	True	or	False;	semng	this	value	to	True	will	execute	the	SGI Update	
component;	semng	it	to	False	will	keep	it	from	execuEng	over	and	over	again	

Outputs:	
− success:	True	or	False	value	indicaEng	success	of	the	update	

4. Crea=ng a shape object

CreaEng	shape	objects	using	the	SGI Shape	or	SGI dShape	components	serves	different	
purposes.	A	shape	object	can	be	used	to	define	the	leJ-hand-side	or	the	right-hand-side	of	a	
rule.	Rule	applicaEon	also	requires	a	shape	object	as	the	input	shape	and,	opEonally,	as	the	
input	subshape	(see	secEon	7. Applying a rule).	

A	shape	object	may	consist	of	points,	line	segments	and	plane	segments,	circles	and	ellipses,	
circular	arcs	and	quadraEc	Bezier	curves,	as	well	as	shape	descripEons.	Points	may	have	
labels	or	shape	descripEons	assigned	as	a=ributes.	The	Text Point,	Text Curve	and	Text
Surface	components	allows	one	to	assign	a	label	or	shape	descripEon	as	a	text	to	a	point,	
curve/line	segment	or	surface/plane	segment.	Note	that	the	resulEng	geometry	is	only	
recognised	by	any	of	the	SGI	components,	specifically	SGI Shape	or	SGI dShape.	Other	
Grasshopper	components	will	not	recognise	the	labelled	geometry.	

The	SGI Shape	and	SGI dShape	components	differ	in	the	fact	that	the	la=er	accepts	shape	
descripEons	using	an	extra	input,	while	the	former	does	not.	
	
Text Point

The	Text Point	component	creates	a	labelled	point	object,	that	is,	a	point	with	a	label	or	
shape	descripEon	as	a=ribute.	This	component	can	also	be	used	to	tag	a	point	with	a	
hashtag,	if	the	point	will	form	part	of	the	leJ-hand-side	or	right-hand-side	of	a	shape	rule.	
Within	the	same	rule,	the	hashtag	can	then	be	used	to	reference	the	point	in	a	descripEon	
rule,	predicate	or	direcEve.	
Inputs:	

− P:	a	point	specifying	the	posiEon	of	the	object	
− label:	a	text	specifying	the	label,	shape	descripEon	or	hashtag	of	the	object	(see	

secEon	8. Specifying shape descrip=ons for	a	specificaEon	of	descripEons);	a	label	
must	be	enclosed	in	double	quotes;	a	hashtag	should	contain	only	le=ers,	digits	and	
the	underscore	(and	not	start	with	a	digit)	

Outputs:	
− G:	the	resulEng	text	point	object	

Text Curve

The	Text Curve	component	creates	a	labelled	curve/line	object,	that	is,	a	curve/line	with	a	
label	or	shape	descripEon	as	a=ribute.	The	label	is	visualised	as	a=ached	to	a	point.	This	
component	can	also	be	used	to	tag	a	curve/line	with	a	hashtag,	if	this	geometry	will	form	
part	of	the	leJ-hand-side	or	right-hand-side	of	a	shape	rule.	Within	the	same	rule,	the	
hashtag	can	then	be	used	to	reference	the	curve/line	in	a	descripEon	rule,	predicate	or	
direcEve.	
Inputs:	

− C:	a	curve/line	object	
− label:	a	text	specifying	the	label,	shape	descripEon	or	hashtag	of	the	object	(see	

secEon	8. Specifying shape descrip=ons for	a	specificaEon	of	descripEons);	a	label	

must	be	enclosed	in	double	quotes;	a	hashtag	should	contain	only	le=ers,	digits	and	
the	underscore	(and	not	start	with	a	digit)	

Outputs:	
− G:	the	resulEng	text	curve/line	object	

Text Surface

The	Text Surface	component	creates	a	labelled	surface	object,	that	is,	a	surface	with	a	label	
or	shape	descripEon	as	a=ribute.	The	label	is	visualised	as	a=ached	to	a	point.	This	
component	can	also	be	used	to	tag	a	surface	with	a	hashtag,	if	this	surface	will	form	part	of	
the	leJ-hand-side	or	right-hand-side	of	a	shape	rule.	Within	the	same	rule,	the	hashtag	can	
then	be	used	to	reference	the	surface	in	a	descripEon	rule,	predicate	or	direcEve.	
Inputs:	

− S:	a	surface	object	
− label:	a	text	specifying	the	label,	shape	descripEon	or	hashtag	of	the	object	(see	

secEon	8. Specifying shape descrip=ons for	a	specificaEon	of	descripEons);	a	label	
must	be	enclosed	in	double	quotes;	a	hashtag	should	contain	only	le=ers,	digits	and	
the	underscore	(and	not	start	with	a	digit)	

Outputs:	
− G:	the	resulEng	text	surface	object	

SGI Shape

The	SGI Shape	component	creates	a	shape	object	from	a	geometry	and	an	opEonal	
reference	point.	
Inputs:	

− G:	a	geometry	of	points,	text	points,	lines,	polylines,	(flat)	surfaces,	meshes,	
boundary	representaEons,	circles,	ellipses,	(circular)	arcs	and/or	quadraEc	Bezier	
curves;	any	part	of	the	geometry	not	recognised	will	be	ignored	

− refP:	an	opEonal	reference	point;	if	specified,	the	geometry	will	be	moved	from	the	
reference	point	to	the	origin,	allowing	a	shape	that	will	serve	as	the	leJ-hand-side	or	
right-hand-side	to	a	rule	to	be	drawn	or	specified	spaEally	separated	from	the	other	
side	of	the	rule	

Outputs:	
− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	shape	object	

SGI dShape

The	SGI dShape	component	creates	a	shape	object	from	a	geometry,	descripEons	and	an	
opEonal	reference	point.	The	descripEons	may	be	omi=ed,	so	may	be	the	geometry,	though	
not	both	at	the	same	Eme.	
Inputs:	

− G:	a	geometry	of	points,	text	points,	lines,	polylines,	(flat)	surfaces,	meshes,	
boundary	representaEons,	circles,	ellipses,	(circular)	arcs	and/or	quadraEc	Bezier	
curves;	any	part	of	the	geometry	not	recognised	will	be	ignored	

− D:	one	or	more	shape	descripEons,	each	item	preceded	by	the	shape	descripEon	
type	(name)	and	a	colon;	mulEple	shape	descripEons	of	the	same	type	can	be	
combined	into	a	single	item	by	separaEng	them	with	a	verEcal	bar	

− refP:	an	opEonal	reference	point;	if	specified,	the	geometry	will	be	moved	from	the	
reference	point	to	the	origin,	allowing	a	shape	that	will	serve	as	the	leJ-hand-side	or	
right-hand-side	to	a	rule	to	be	drawn	or	specified	spaEally	separated	from	the	other	
side	of	the	rule	

Outputs:	
− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	shape	object	
− D:	the	shape	descripEons	of	the	shape	object	(note	that	any	shape	descripEon	that	is	

assigned	as	an	a=ribute	to	part	of	the	geometry	is	not	included	as	it	already	forms	
part	of	the	geometry)	

SGI Shape to Geometry

The	SGI Shape to Geometry (S2G)	component	converts	any	shape	object	into	its	geometry	
and	shape	descripEons.	
Inputs:	

− S:	a	shape	object	
Outputs:	

− G:	the	geometry	of	the	shape	object	
− D:	the	shape	descripEons	of	the	shape	object	(note	that	any	shape	descripEon	that	is	

assigned	as	an	a=ribute	to	part	of	the	geometry	of	the	shape	object	is	not	included	
as	it	already	forms	part	of	the	geometry)	

5. Manipula=ng a shape object

Following	the	creaEon	of	a	shape	object,	various	geometrical	operaEons	are	available	as	
SortalGI	components	to	act	upon	a	shape	object;	e.g.,	to	translate/move	a	shape,	rotate	a	
shape,	reflect/mirror	a	shape	and	scale	a	shape.	Each	of	these	components	takes	as	input	a	
shape	object	and	any	addiEonal	data	required	to	inform	and	apply	the	transformaEon,	and	
returns	the	resulEng	shape	object	as	well	as	the	corresponding	geometry	and	shape	
descripEons.	Their	operaEon	is	quite	idenEcal	to	the	corresponding	Grasshopper	
components,	except	that	they	act	upon	a	shape	object.	

In	addiEon,	there	are	SortalGI	components	to	union/sum	two	shapes,	union/sum	a	list	of	
shapes,	intersect/take	the	product	of	two	shapes	and	take	the	difference	of	one	shape	with	
respect	to	another.	

SGI Move Shape

The	SGI Move Shape	component	moves	a	shape	object	along	a	vector.	This	component	is	
very	useful	to	ensure	the	visualisaEon	of	shape	objects	resulEng	from	rule	applicaEon	do	not	
overlap	and	are	properly	spaced	(see	secEon	7. Applying a rule).	
Inputs:	

− S:	a	shape	object	
− T:	a	translaEon	vector	

Outputs:	
− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	shape	descripEons	of	the	resulEng	shape	object	

SGI Rotate Shape

The	SGI Rotate Shape	component	rotates	a	shape	object	about	the	normal	vector	of	a	base	
plane	by	a	specified	angle.		
Inputs:	

− S:	a	shape	object	
− A:	a	rotaEon	angle	in	radians	
− P:	a	rotaEon	plane	

Outputs:	
− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	shape	descripEons	of	the	resulEng	shape	object	

SGI Mirror Shape

The	SGI Mirror Shape	component	mirrors	a	shape	about	a	base	plane.		
Inputs:	

− S:	a	shape	object	

− P:	a	mirror	plane	
Outputs:	

− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	shape	descripEons	of	the	resulEng	shape	object	

SGI Scale Shape

The	SGI Scale Shape	component	scales	a	shape	object	about	a	centre	of	scaling	uniformly	by	
a	specified	scaling	factor.	
Inputs:	

− S:	a	shape	object	
− C:	a	centre	of	scaling	
− F:	a	scaling	factor	

Outputs:	
− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	shape	descripEons	of	the	resulEng	shape	object	

	
SGI Sum

The	SGI Sum	component	sums	(combines)	two	shape	objects	together.	
Inputs:	

− S1:	a	shape	object	
− S2:	another	shape	object	

Outputs:	
− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	shape	descripEons	of	the	resulEng	shape	object	

	
SGI Product

The	SGI Product	component	determines	the	product	(intersecEon)	of	two	shape	objects.	
Inputs:	

− S1:	a	shape	object	
− S2:	another	shape	object	

Outputs:	
− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	shape	descripEons	of	the	resulEng	shape	object	

	
SGI Difference

The	SGI Difference	component	takes	the	difference	(complement)	of	one	shape	object	with	
respect	to	another	shape	object.	
Inputs:	

− S1:	a	shape	object	
− S2:	another	shape	object	

Outputs:	
− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	shape	descripEons	of	the	resulEng	shape	object	

	
SGI Sum All

The	SGI Sum All	component	sums	(combines)	a	list	of	shape	objects	together.	
Inputs:	

− L:	a	list	of	shape	objects	
Outputs:	

− S:	the	resulEng	shape	object	
− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	shape	descripEons	of	the	resulEng	shape	object	

6. Crea=ng a rule

A	rule	is	conceptually	specified	in	the	form	lhs	→	rhs,	where	the	leJ-hand-side	(lhs)	of	the	
rule	specifies	the	pa=ern	to	be	matched	under	some	transformaEon	and	the	right-hand-side	
(rhs)	specifies	the	resulEng	pa=ern	that	replaces	the	matched	pa=ern	under	the	same	
transformaEon.	That	is,	applying	a	rule	a	→	b	to	a	given	shape	s	involves	determining	a	
transformaEon	f	such	that	f(a)	is	a	part	of	s	(f(a)	≤	s),	following	which	s	is	replaced	by	s	–	f(a)	
+	f(b).	

A	shape	rule	is	commonly	understood	to	imply	that	both	lhs	and	rhs	consEtute	a	geometry,	
possibly	including	non-geometric	a=ributes,	e.g.,	labels	or	descripEons.	A	descripEon	rule,	
then,	implies	that	both	lhs	and	rhs	consEtute	a	shape	descripEon	of	the	same	shape	
descripEon	type.	Combining	a	shape	rule	with	one	or	more	descripEon	rules	specifies	a	
compound	rule,	where	the	different	component	rules	operate	in	parallel,	although	they	may	
interact	with	each	other.	

A	rule	object	specifies	such	a	compound	rule	although	it	can	be	used	to	specify	a	shape	rule	
or,	alternaEvely,	one	or	more	descripEon	rules.	That	is,	which	component	rules	are	included	
depends	on	the	shape	objects	that	are	provided	as	lhs	and	rhs	of	the	(compound)	rule.	If	the	
lhs	does	not	include	any	geometry,	then	the	rhs	may	not	include	any	geometry	either,	as	no	
matching	transformaEon	can	be	determined	from	an	empty	shape.	With	respect	to	shape	
descripEons,	if	either	the	lhs	or	rhs	includes	a	shape	descripEon	type	but	the	other	side	does	
not,	then	an	empty	shape	descripEon	of	that	type	is	automaEcally	included	in	the	other	side	
to	ensure	a	full	correspondence	between	shape	descripEon	types.	

Two	types	of	rules	are	disEnguished,	parametric-associaEve	rules	and	non-parametric	rules.	
The	la=er	are	the	easiest	to	understand.	In	the	case	of	a	non-parametric	rule,	the	pa=ern	
specified	by	the	lhs	of	the	rule	must	match	a	part	of	the	given	shape	under	a	similarity	
transformaEon	(translaEon,	rotaEon,	reflecEon	and/or	uniform	scaling).	That	is,	when	
matching	for	a	square	of	line	segments,	any	square	of	line	segments	from	the	given	shape	
will	do,	even	if	these	line	segments	extend	beyond	the	corner	points	of	the	square.	The	
same	applies	when	matching	for	a	rectangle,	however,	only	rectangles	with	the	same	raEo	
between	length	and	width	will	be	matched.	

A	parametric-associaEve	rule	matches	a	much	larger	variety	of	shapes.	In	principle,	when	
matching	a	triangle	of	line	segments,	any	triangle	of	line	segments	in	the	given	shape	will	be	
matched,	irrespecEve	of	its	shape.	The	corresponding	transformaEon	is	a	topological	
transformaEon	though	there	is	no	mathemaEcal	representaEon	for	such	a	transformaEon	
(unlike	for	a	similarity	transformaEon).	However,	some	constraints	do	apply.	Specifically,	
parallel	and	perpendicular	lines	are	automaEcally	idenEfied	in	the	lhs	and	considered	as	
constraints	for	matching.	Thus,	specifying	a	right-angled	triangle	as	the	lhs	will	only	match	
right-angled	triangles	in	the	given	shape,	however,	specifying	an	equilateral	or	isosceles	
triangle	as	the	lhs	will	have	no	effect,	any	triangle	in	the	given	shape	will	be	matched.	

While	in	some	cases	it	may	be	difficult	to	predict	the	exact	matching	results	of	the	lhs	of	a	
parametric	rule,	the	matching	mechanism	broadly	follows	the	following	steps:	

1. IdenEfy	all	(infinite)	lines	that	carry	any	line	segment	in	the	lhs.	
2. IdenEfy	all	(infinite)	lines	that	carry	any	line	segments	in	the	given	shape.	

3. Enumerate	all	combinaEons	of	lines	from	the	given	shape	that	match	the	number	of	
lines	for	the	lhs.	

4. Eliminate	all	combinaEons	that	do	not	preserve	parallelism	and	perpendicularity	
between	lines	as	specified	by	the	lhs.	

5. IdenEfy	all	intersecEon	points	of	(infinite)	lines	in	the	lhs	and	note	whether	the	
intersecEon	point	falls	inside,	outside	or	is	an	endpoint	of	any	line	segment	on	each	
infinite	line.	

6. Do	the	same	for	the	remaining	combinaEons	of	(infinite)	lines	for	the	given	shape:	
a. Eliminate	any	combinaEons	where	an	inside	intersecEon	point	for	the	lhs	is	

not	matched	with	an	inside	intersecEon	point	for	the	given	shape.	
b. Eliminate	any	combinaEons	where	an	intersecEon	point	that	is	an	endpoint	

for	the	lhs	is	not	matched	with	an	intersecEon	point	that	is	either	an	endpoint	
or	an	inside	point	for	the	given	shape.	

7. For	the	lhs,	IdenEfy	all	endpoints	of	line	segments	on	these	(infinite)	lines	and	note	
their	ordering	also	with	respect	to	the	intersecEon	points.	

8. Do	the	same	for	the	given	shape	and	eliminate	any	remaining	combinaEons	where	
two	intersecEon	points	in	the	lhs	are	contained	within	a	single	line	segment	and	the	
corresponding	intersecEon	points	in	the	given	shape	are	not.	

9. Check	addiEonal	constraints	as	specified	by	any	predicates	(see	secEon	9. Specifying
predicates)	

A	similar	mechanism	applies	to	plane	segments.	

SGI Rule

The	SGI Rule	component	creates	a	non-parametric	rule	object	from	a	leJ-hand-side	(lhs)	
and	a	right-hand-side	(rhs),	a	name	and	a	brief	descripEve	text.	If	a	shape	descripEon	type	is	
present	as	part	of	one	shape	object	(lhs	or	rhs)	but	absent	from	the	other	shape	object,	an	
empty	shape	descripEon	of	that	type	is	automaEcally	added	to	the	other	shape	object	
within	the	rule.	
Inputs:	

− name:	a	rule	name;	this	rule	name	should	be	unique	and	should	contain	only	le=ers,	
digits	and	the	underscore	(and	not	start	with	a	digit)	

− desc:	a	brief	explanaEon	of	the	rule	
− lhs:	a	shape	object	represenEng	the	leJ-hand-side	of	the	rule	
− rhs:	a	shape	object	represenEng	the	right-hand-side	of	the	rule	

Outputs:	
− rule:	the	non-parametric	rule	object	

	
SGI pRule

The	SGI pRule	component	creates	a	parametric-associa6ve	rule	object	from	a	leJ-hand-side	
(lhs)	and	a	right-hand-side	(rhs),	a	name	and	a	brief	descripEve	text,	and	opEonal	predicates	
and	direcEves.	If	a	shape	descripEon	type	is	present	as	part	of	one	shape	object	(lhs	or	rhs)	

but	absent	from	the	other	shape	object,	an	empty	shape	descripEon	of	that	type	is	
automaEcally	added	to	the	other	shape	object	within	the	rule.	

Inputs:	
− name:	a	rule	name;	this	rule	name	should	be	unique	and	should	contain	only	le=ers,	

digits	and	the	underscore	(and	not	start	with	a	digit)	
− desc:	a	brief	explanaEon	of	the	rule	
− lhs:	a	shape	object	represenEng	the	leJ-hand-side	of	the	rule	
− predicates:	an	opEonal	list	of	predicates	(see	secEon	9. Specifying predicates)	
− rhs:	a	shape	object	represenEng	the	right-hand-side	of	the	rule	
− direc7ves:	an	opEonal	list	of	direcEves	(see	secEon	10. Specifying direc=ves)	

Outputs:	
− pRule:	the	parametric-associaEve	rule	object	

SGI Get Rule

The	SGI Get Rule component	retrieves	a	rule	object	(parametric-associaEve	or	non-
parametric)	by	its	given	name.	
Inputs:	

− name:	a	rule	name	
Outputs:	

− rule:	a	rule	object	(or	null)	
	
SGI Rule Info

The	SGI Rule Info	component	deconstructs	any	rule	object	(parametric-associaEve	or	non-
parametric)	into	its	leJ-hand-side	and	right-hand-side	shape	objects,	and	predicates	and	
direcEves,	if	any,	and	provides	a	mulE-line	text	containing	the	rule	object’s	GUID,	name	and	
descripEon.	
Inputs:	

− rule:	a	rule	object	
Outputs:	

− info:	a	mulE-line	text	including	the	rule’s	GUID,	name	and	descripEon	
− lhsS:	the	leJ-hand-side	shape	object	
− rhsS:	the	right-hand-side	shape	object	
− predicates:	a	list	of	predicates	(see	secEon	9. Specifying predicates),	only	in	case	of	a	

parametric-associaEve	rule	
− direc7ves:	a	list	of	direcEves	(see	secEon	10. Specifying direc=ves),	only	in	case	of	a	

parametric-associaEve	rule	

7. Applying a rule

Applying	a	rule	to	a	given	shape	object	involves	determining	a	transformaEon	under	which	
the	leJ-hand-side	(lhs)	of	the	rule	is	a	part	of	the	given	shape.	That	is,	rule	applicaEon	
involves	two	steps:	recogniEon	and	manipulaEon;	recogniEon	implies	matching	the	lhs	of	
the	rule	under	some	transformaEon	to	a	part	of	the	given	shape	and	manipulaEon	implies	
replacing	the	recognised	lhs	by	the	right-hand-side	(rhs)	of	the	shape	rule	under	the	same	
transformaEon.	

Obviously,	the	lhs	of	a	shape	rule	may	match	mulEple	parts	of	the	same	given	shape.	These	
matches	may	correspond	to	different	but	similar	parts,	e.g.,	if	the	lhs	of	a	non-parametric	
rule	specifies	a	square,	the	rule	will	match	any	square	in	the	given	shape	independent	of	its	
locaEon,	rotaEon,	reflecEon	or	scale	(a	similarity	transformaEon).	However,	these	matches	
may	also	apply	to	the	same	part	in	different	ways.	Again,	if	the	lhs	of	a	non-parametric	rule	
specifies	a	square,	which	has	90°	rotaEonal	symmetry,	and	the	rhs	specifies	the	same	square	
moved	diagonally,	then	any	square	in	the	given	shape	will	amount	to	four	matches	as	the	
square	may	be	moved	into	any	of	its	four	diagonal	direcEons.	

The	SortalGI	plug-in	disEnguishes	four	(or	five)	rule	applicaEon	components:	the	first	one,	
SGI Apply,	applies	only	a	single	match	(either	randomly	selected	or	specified	by	its	index);	
the	second	one,	SGI Apply All,	applies	all	matches	in	parallel,	returning	as	many	results	as	
there	are	matches;	and	the	third	one,	SGI Apply All Together,	applies	all	matches	in	parallel	
while	combining	all	the	results	into	a	single	shape.	The	fourth	one,	SGI Derive,	takes	a	series	
of	rules	as	input	and	applies	each	rule	in	sequence,	returning	all	intermediate	results	as	well	
as	the	final	result.	The	fiJh	component,	SGI Matches,	does	not	actually	apply	the	rule	but,	
instead,	returns	all	the	matches.	Note	that	the	actual	number	of	matches	returned	may	be	
influenced	by	the	(a)symmetry	of	the	rhs.	

All	four	components	(except	SGI Matches)	accept	both	a	shape	object	and	an	opEonal	
subshape	object.	If	specified,	the	la=er	must	be	a	subshape,	that	is,	part	of,	the	former.	If	a	
subshape	object	is	specified	then	recogniEon/matching	is	restricted	to	the	subshape.	This	
allows	one	to	reduce	the	number	of	matches	where	appropriate.	ManipulaEon	will	always	
apply	to	the	enEre	shape	object.	

Every	resulEng	shape	is	accompanied	by	a	translaEon	vector.	In	the	case	of	SGI Apply,	the	
translaEon	vector	allows	the	resulEng	shape	to	be	visualised	aside	from	the	original	shape,	
along	the	X-axis.	In	the	case	of	SGI Apply All,	the	translaEon	vectors	allow	the	resulEng	
shapes	to	be	visualised	one	above	the	other,	along	the	Y-axis,	and	aside	from	the	original	
shape,	along	the	X-axis.	In	the	case	of	SGI Derive,	the	translaEon	vectors	allow	the	resulEng	
shapes	to	be	visualised	one	aside	from	the	other,	and	from	the	original	shape,	along	the	X-
axis.	The	extent	of	the	translaEon	vector	is	specified	by	the	displacementX	and	
displacementX	values	provided	to	the	SGI Setup	component	or,	if	no	value	is	provided,	by	
the	bounding	box	of	the	original	shape	(see	secEon	3. Star=ng on a SortalGI-based
parametric model).	

All	rule	applicaEon	components	accept	parametric-associaEve	and	non-parametric	rules.	

SGI Apply

The	SGI Apply	component	determines	all	possible	matches	but	applies	only	a	single	one,	
either	randomly	selected	or	as	specified	by	an	index	value.	
Inputs:	

− rule:	a	rule	object	
− S:	a	shape	object	to	apply	the	rule	to	
− subS:	an	opEonal	shape	object	to	restrict	matches	to;	if	specified,	this	shape	object	

must	be	a	subshape,	that	is,	part	of,	the	shape	object	S	
− i:	an	opEonal	index	to	select	which	match	to	consider	for	rule	applicaEon;	a	value	of	

-1	(default)	selects	a	random	match,	any	number	outside	the	index	range	yields	the	
last	one	among	the	list	of	matches	

Outputs:	
− S:	the	resulEng	shape	object	upon	rule	applicaEon;	if	no	match	is	found	then	the	

original	shape	is	returned	
− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	descripEons	of	the	resulEng	shape	object	
− T:	a	translaEon	vector	to	allow	the	resulEng	shape	to	be	drawn	next	to	the	original	

shape,	along	the	X-axis	
− success:	True	or	False	indicaEng	whether	a	match	was	found	or	not	

	
SGI Apply All

The	SGI Apply All	component	determines	and	applies	all	possible	matches.	
Inputs:	

− rule:	a	rule	object	
− S:	a	shape	object	to	apply	the	rule	to	
− subS:	an	opEonal	shape	object	to	restrict	matches	to;	if	specified,	this	shape	object	

must	be	a	subshape,	that	is,	part	of,	the	shape	object	S	
Outputs:	

− L:	a	list	of	resulEng	shape	objects	corresponding	to	the	number	of	matches	found;	if	
no	match	is	found	then	the	original	shape	is	returned	

− n:	the	number	of	matches	found,	corresponds	to	the	length	of	the	lists	L	and	Ts	
− Ts:	a	list	of	translaEon	vectors	to	allow	the	resulEng	shapes	to	be	drawn	one	above	

the	other,	along	the	Y-axis,	and	next	to	the	original	shape,	along	the	X-axis	
− success:	True	or	False	indicaEng	whether	at	least	one	match	was	found	or	not	

	
SGI Apply All Together

The	SGI Apply All	Together	component	determines	and	applies	all	possible	matches	and	
combines	all	the	results	together.	
Inputs:	

− rule:	a	rule	object	

− S:	a	shape	object	to	apply	the	rule	to	
− subS:	an	opEonal	shape	object	to	restrict	matches	to;	if	specified,	this	shape	object	

must	be	a	subshape,	that	is,	part	of,	the	shape	object	S	
Outputs:	

− S:	the	resulEng	shape	object	upon	rule	applicaEon;	if	no	match	is	found	then	the	
original	shape	is	returned	

− G:	the	geometry	of	the	resulEng	shape	object	
− D:	the	descripEons	of	the	resulEng	shape	object	
− T:	a	translaEon	vector	to	allow	the	resulEng	shape	to	be	drawn	next	to	the	original	

shape,	along	the	X-axis	
− success:	True	or	False	indicaEng	whether	a	match	was	found	or	not	

SGI Derive

The	SGI Derive	component	acts	as	a	sequence	of	SGI Apply	components.	Given	a	list	of	rule	
objects,	it	applies	each	in	sequence.	
Inputs:	

− rules:	a	list	of	rule	objects	
− S:	a	shape	object	to	apply	the	first	rule	to	
− subS:	an	opEonal	shape	object	to	restrict	the	first	match	to,	or	a	list	of	shape	objects	

to	restrict	consecuEve	matches	to;	if	specified,	the	shape	object	must	be	a	subshape,	
that	is,	part	of,	the	input	shape	of	the	respecEve	rule	object	

− i:	an	opEonal	index	to	select	which	matches	to	consider	for	rule	applicaEon;	a	value	
of	-1	(default)	selects	a	random	match,	any	number	outside	the	index	range	yields	
the	last	one	among	the	list	of	matches;	may	be	specified	as	a	list	of	indices	

− runIt:	True	or	False	indicaEng	whether	to	execute	the	component	or	not	
Outputs:	

− L:	a	list	of	resulEng	shape	objects,	one	for	each	rule	object;	if	no	match	is	found	for	a	
specific	rule	object	then	the	input	shape	for	that	rule	is	returned	

− n:	the	length	of	the	lists	L,	Ts	and	success	
− Ts:	a	list	of	translaEon	vectors	to	allow	the	resulEng	shapes	to	be	drawn	one	next	to	

the	other	and	to	the	original	shape,	along	the	X-axis	
− success:	a	list	of	True	or	False	values	indicaEng	for	each	rule	object	whether	at	least	

one	match	was	found	or	not	
	
SGI Matches

The	SGI Matches	component	determines	all	possible	matches	and	returns	these.	
Inputs:	

− rule:	a	rule	object	
− S:	a	shape	object	to	apply	the	rule	to	(determine	the	matches	of)	

Outputs:	
− L:	a	list	of	resulEng	shape	objects	corresponding	to	the	number	of	matches	found;	if	

no	match	is	found	then	the	original	shape	is	returned	
− n:	the	number	of	matches	found,	corresponds	to	the	length	of	the	lists	L	and	Ts	

− Ts:	a	list	of	translaEon	vectors	to	allow	the	resulEng	shapes	to	be	drawn	one	next	to	
the	other	and	to	the	original	shape,	along	the	X-axis	

− success:	True	or	False	indicaEng	whether	a	match	was	found	or	not	

8. Specifying shape descrip=ons

Shape	descripEons	allow	for	verbal	descripEons	of	a	shape.	They	follow	a	prescribed	format	
that	allows	them	to	be	interpreted	and	matched	by	the	SortalGI	engine	(see	Appendix A. A
formal nota=on for shape descrip=ons	for	an	explicaEon	of	the	format).	

Parametric shape descrip=ons
Shape	descripEons	are	parametric	in	nature,	that	is,	when	adopted	as	the	leJ-hand-side	
(lhs)	of	a	(shape)	descripEon	rule,	a	shape	descripEon	may	contain	one	or	more	parameters	
that	can	be	matched	onto	parts	of	the	descripEon	under	invesEgaEon.	When	adopted	as	the	
right-hand-side	(rhs)	of	a	(shape)	descripEon	rule,	a	shape	descripEon	may	also	contain	
parameter	references	although	the	parameters	should	have	already	been	specified	in	the	
corresponding	lhs,	such	that	the	value	of	the	parameter	reference	in	the	rhs	can	be	taken	
from	the	matching	of	the	lhs.	Obviously,	shape	descripEons	that	do	not	form	part	of	a	shape	
descripEon	rule	should	not	contain	any	parameters	or	parameter	references,	otherwise	
matching	will	necessarily	fail.	

Example	(‘descripEon’	is	the	descripEon	type	name	and	‘a’	is	a	parameter):	
description: a

Shape descrip=on types
A	single	shape	object	or	rule	object	may	specify	more	than	one	descripEon.	For	example,	
one	descripEon	may	be	used	to	constrain	rule	applicaEon	while	another	may	serve	to	count	
the	number	of	rule	applicaEons	performed	on	the	shape	object.	In	order	to	be	able	to	
correctly	match	shape	descripEons	belonging	to	the	lhs	and	the	rhs	of	the	rule	object,	shape	
descripEons	must	be	typed,	that	is,	each	shape	descripEon	that	is	not	used	as	an	a=ribute	to	
a	point	must	be	preceded	by	its	type	name	(type	name	and	descripEon	are	separated	by	a	
colon).		Shape	descripEon	types	must	be	prescribed	in	the	SGI Setup	component	(see	
secEon	3. Star=ng on a SortalGI-based parametric model).	
MulEple	descripEons	may	share	the	same	descripEon	type.	These	can	be	collected	in	a	
single	line,	using	a	verEcal	bar	to	separate	the	various	descripEons.	

Examples:	
min_width: 10
colors: “black” | “white”

Descrip=on literals
Literal	values	in	descripEon	may	be	numbers,	double	quoted	strings	or	predefined	keywords.	
The	la=er	include	e,	nil,	pi,	true	and	false.	e	and	nil	are	equivalent	and	represent	an	‘empty’	
enEty.	Depending	on	the	context,	the	‘empty’	enEty	may	be	interpreted	to	denote	zero,	an	
empty	string	or	an	empty	tuple.	The	literals	pi,	true	and	false	denote	the	numbers	‘π’,	1	and	
0,	respecEvely.	

Examples:	
status: true
list: e

Descrip=on tuples
While	shape	descripEons	are	specified	in	textual	form,	they	can	be	structured	as	nested	
lists/tuples.	Tuples	should	be	enclosed	using	either	parentheses,	angle	brackets	or	square	
brackets.	A	top-level	tuple	may	have	the	enclosing	brackets	omi=ed.	The	enEEes	within	a	
tuple	should	be	separated	using	either	commas	or	semicolons.	Again,	a	top-level	tuple	may	
have	the	separaEng	marks	omi=ed.	

Examples:	
segment: <(0, 0), (1, 0)>
cubes: (“l:”, 10, “c:”, (0, 0), “r:”, 0) (“l:”, 10, “c:”, (5, 5), “r:”, 45)

Descrip=on parameters
A	descripEon	parameter	is	a	variable	term	that	is	specified	by	an	idenEfier	(any	sequence	of	
le=ers,	digits	and/or	underscores	starEng	either	with	a	le=er	or	underscore)	and	embedded	
in	the	lhs	of	a	descripEon	rule.	Under	rule	applicaEon,	the	parameter	will	be	matched	to	a	
literal	or	a	tuple.	If	the	parameter	forms	part	of	a	string	expression	(see	“String	expressions”	
below),	this	literal	can	be	any	part	of	a	literal	string.	If	the	parameter	forms	part	of	a	tuple,	it	
matches	a	specific	element	of	the	tuple,	unless	it	is	signified	by	a	Kleene	star	(‘*’)	or	a	Kleene	
plus	(‘+’),	in	which	case	it	can	match	any	subsequence	of	elements	of	the	tuple,	respecEvely,	
including	or	excluding	an	empty	subsequence.	The	use	of	a	Kleene	star	or	Kleene	plus	
signifier	allows	for	the	matching	of	variable	length	tuples.	

Examples:	
fixed_length: <“Fixed”, var1> <var2, var3> var4
variable_length: (0, 0) (x1, y1) remainder*

Parameter condi=onals
Any	descripEon	parameter	may	be	specified	a	condiEonal	that	constrains	the	possible	values	
of	this	parameter.	The	condiEonal	must	follow	the	parameter	and	both	must	be	separated	
only	by	a	quesEon	mark	(‘?’).	The	condiEonal	may	be	either	enumeraEve	or	equaEonal,	or	
specify	a	range.	An	enumeraEve	condiEonal	explicates	a	finite	set	of	possible	values.	This	set	
must	contain	either	all	numbers	or	all	(double	quoted)	strings,	and	the	set	must	be	enclosed	
using	curly	brackets.	An	equaEonal	condiEonal	specifies	a	numeric	equality	or	inequality	on	
the	parameter,	in	the	form	of	a	condiEonal	operator	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’)	and	
operand.	The	operand	must	be	either	a	number	or	a	numerical	expression	(see	“Numerical	
expressions”	below)	operaEng	on	numbers,	parameters—previously	defined—funcEons	(see	
“FuncEons”	below)	and/or	references	(see	“References”	below).	Neither	strictly	
enumeraEve,	nor	strictly	condiEonal,	it	is	possible	to	specify	a	range	of	numeric	values	using	
a	minimum	and	maximum	value	enclosed	in	square	brackets.	

Examples:	
yard: value?{nil, “default”}
rooms: <nrooms?>2, rooms>
range: a?[0, 10]

Numerical expressions
A	numerical	expression	can	be	embedded	in	a	parameter	condiEonal	(in	the	lhs	of	a	
descripEon	rule)	or	in	the	rhs	of	a	descripEon	rule.	A	numerical	expression	can	operate	on	
literal	keywords,	numbers,	numerical	funcEons	(see	“FuncEons”	below),	parameters	and	

references	(see	“References”	below).	Numerical	expressions	may	include	the	operators	plus	
(‘+’),	minus	(‘–‘),	Emes	(‘*’),	divided-by	(‘/’),	modulo	(‘%’)	and	to-the-power-of	(‘^’),	with	the	
usual	operator	precedence	rules	applying	and	the	use	of	parentheses	to	override	these	rules	
where	necessary.	Other	operaEons	are	available	in	the	form	of	numerical	funcEons.	

Example	(‘vol’	and	‘length’	specify	parameter	references)	:	
volume: vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3

String expressions
A	string	expression	in	the	lhs	of	a	descripEon	rule	enables	the	idenEficaEon	of	substrings	in	
the	matching	process.	Here,	a	string	expression	is	a	concatenaEon	of	literals	and	parameters	
(with	or	without	condiEonal).	A	parameter	can	match	any	substring,	condiEoned	by	the	
literal	components	(and	the	condiEonal,	if	present).	A	concatenaEon	of	two	parameters,	
without	a	literal	separaEng	the	two	parameters,	would	not	be	possible,	unless	the	first	
parameter	has	an	enumeraEve	condiEonal.	
A	string	expressions	in	the	rhs	of	a	descripEon	rule	can	include	literals,	parameter	references		
(see	“References”	below),	numerical	expressions	(enclosed	in	parentheses)	and	funcEons	
returning	either	numbers	or	strings	(see	“FuncEons”	below).	The	result	is	the	concatenaEon	
of	all	components	upon	their	evaluaEon	into	literal	numbers	or	strings.	

Examples	(the	two	lines	below	may	form	the	lhs	and	rhs	of	the	same	descripEon	rule):	
be: be1 be20.“, ”.be21.“-rafter beam in front, ”.be22.“-rafter beam in back” “with ”.c?=(be21 +
be22).“ columns”
be: be1 be20.“, ”.be21.“-rafter beam abutting ”.be22 “with ”.(c + 1).“ columns”

Tuple expressions
Tuple	expressions	allow	one	to	append	or	prepend	an	enEty	to	a	tuple,	join	two	tuples	or	
add	two	tuples.	The	operaEons	to	append,	prepend	and	join	all	take	the	same	format:	two	
operands	separated	by	a	space.	The	appropriate	interpretaEon	is	arrived	at	by	looking	at	the	
structure	of	the	two	operands.	If	the	enEty	shares	a	similar	“structure”	with	the	first	
element	of	the	tuple,	e.g.,	both	are	numbers	or	both	are	a	tuple	of	similar	structure,	then	
the	enEty	will	be	appended	or	prepended	to	the	tuple	depending	on	its	posiEon	with	
respect	to	the	tuple.	If	both	operands	are	(nested)	tuples,	and	the	elements	of	both	tuples	
have	the	same	structure,	then	a	join	operaEon	will	be	assumed,	combining	the	elements	
from	both	tuples	in	a	new,	single	tuple.	If	no	structural	similarity	exists,	then	the	expression	
will	instead	be	interpreted	as	a	tuple	omimng	enclosing	brackets	and	separator.	
Adding	two	tuples	adds	the	respecEve	enEEes:	if	both	enEEes	are	numbers	they	are	
summed;	if	both	enEEes	are	strings	they	must	be	idenEcal;	if	both	enEEes	are	tuples	and	
have	the	same	structure,	then	addiEon	is	applied	recursively.	

Examples	(the	la=er	also	includes	a	funcEon):	
position: a + (1, 0)
positions: a last(a) + (0, 1)

Func=ons
FuncEons	allow	for	addiEonal	operaEons	on	numbers,	texts	(strings)	and	tuples,	or	a	
combinaEon	thereof.	A	funcEon	returns	a	single	value	from	any	one	of	these	three	enEty	
types.	Strictly	numerical	funcEons	include	sqrt,	sin,	cos	and	tan,	asin,	acos	and	atan,	taking	a	
single	number	as	argument	and	returning	a	number.	FuncEons	operaEng	on	texts	(strings)	

include	determining	the	length	of	a	text	and	determining	a	left	and	right	subtext,	with	the	
length	of	the	subtext	specified	as	an	addiEonal	argument	to	the	funcEon.	
FuncEons	operaEng	on	tuples	include	determining	the	length	of	a	tuple,	retrieving	the	first	
or	last	element	of	a	tuple,	the	minimum	(min)	and	maximum	(max)	value	inside	a	tuple,	
retrieving	a	tuple	of	only	unique	elements,	a	tuple	of	pairs	extracEng	consecuEve	elements	
pairwise	from	the	operand	tuple,	a	tuple	of	pairs	(segments)	such	that	the	ith	pair	is	made	up	
of	the	ith	and	(i+1)th	elements	of	the	operand	tuple,	a	tuple	of	tuples	idenEfying	loops	in	
the	operand	tuple	and	a	tuple	of	tuples	represenEng	an	adjacencies	matrix.	The	la=er	
funcEon	takes	two	arguments,	a	tuple	of	‘enclosures’	and	a	tuple	of	‘connecEng’	elements.	
Tuples	of	numbers	can	be	considered	as	vectors,	currently	only	vectors	of	length	two	or	
three	are	considered.	FuncEons	on	vectors	require	the	different	vectors	to	have	the	same	
length.	These	funcEons	include	determining	the	magnitude	(mag)	of	a	vector	or	the	distance	
(also	mag)	or	angle	between	two	vectors,	adding	(vectoradd)	or	subtracEng	(vectorsubstract)	
two	vectors,	taking	the	dotproduct	or	crossproduct	of	two	vectors	or	scaling	a	vector	by	a	
number	(vectorscale).	
Finally,	a	funcEon	to	generate	a	random	number	takes	as	input	a	tuple	of	two	or	three	
numbers,	with	the	first	two	specifying	the	range	and	the	opEonal	third	one	the	step.	More	
informaEon	on	funcEons	is	provided	in	Appendix B. Descrip=on func=ons.	

Examples:	
positions: a (random(0,10,1), 0)
	
SGI Numeric Func=ons

The	SGI Numeric Functions	component	allows	the	user	to	select	a	single	funcEon	name	
from	a	(drop-down)	list	of	all	funcEons	operaEng	on	numbers	(see	Appendix B. Descrip=on
func=ons).	
	
SGI Text Func=ons

The	SGI Text Functions	component	allows	the	user	to	select	a	single	funcEon	name	from	a	
(drop-down)	list	of	all	funcEons	operaEng	on	texts	(strings)	(see	Appendix B. Descrip=on
func=ons).	
	
SGI Tuple Func=ons

The	SGI Tuple Functions	component	allows	the	user	to	select	a	single	funcEon	name	from	a	
(drop-down)	list	of	all	funcEons	operaEng	on	tuples	(see	Appendix B. Descrip=on func=ons).	
	
SGI Func=on Concat

The	SGI Function Concat	component	concatenates	a	funcEon	name	and	a	list	of	arguments	
into	with	the	argument	list	enclosed	in	parentheses.	
Inputs:	

− func7on:	a	text	specifying	the	funcEon	name	

− args:	one	or	more	arguments	corresponding	to	the	funcEon’s	argument	list,	or	a	list	
thereof	(see		Appendix B. Descrip=on func=ons)	

Outputs:	
− G:	the	resulEng	funcEon	text	(or	list	thereof)	

References
We	disEnguish	three	kinds	of	references.	Firstly,	parameter	references	are	variable	terms	in	
the	rhs	of	a	descripEon	rule	that	reference	variable	terms	(parameters)	in	the	lhs	of	the	
same	(or	another)	descripEon	rule.	The	value	of	the	parameter	reference	in	the	rhs	is	the	
value	of	the	same	parameter	in	the	lhs	upon	the	matching	of	the	lhs.	
Secondly,	a	descripEon	reference	is	similar	to	a	parameter	reference	but	references	a	
variable	term	in	another	descripEon	(that	is	part	of	the	same	rule).	In	such	case,	the	
parameter	name	must	be	preceded	by	the	descripEon	type	name	in	order	to	idenEfy	the	
appropriate	descripEon	and	parameter.	AlternaEvely,	rather	than	referencing	a	specific	
parameter,	the	enEre	value	of	the	descripEon	can	be	referenced	using	the	term	value.	
Finally,	a	shape	reference	similarly	references	data	from	the	shape	rule	component	of	the	
rule.	In	order	to	reference	shape	data,	you	must	refer	to	the	element	type	name	(see Shape
element types	below).	However,	this	will	only	work	if	there	is	only	one	element	of	the	
specific	type,	otherwise	the	reference	will	be	ambiguous.	In	the	case	of	labelled	shape	
elements,	you	can	disambiguate	the	shape	element	either	by	assigning	a	hashtag	to	the	
element	(see	secEon	4. Crea=ng a shape object)	or	by	addiEonally	specifying	its	label,	
provided	the	label	is	unique	(see	example	below).	

Example	querying	the	distance	between	two	points	with	given	labels:	
constraint: a?>=mag(point3D.value:labelD.value=”1”, point3D.value:labelD.value =”2”)
	
SGI Descrip=on Reference

The	SGI Description Reference	component	composes	a	descripEon	text	referencing	a	
parameter	of	another	descripEon	by	concatenaEng	the	descripEon	type	name	with	the	
parameter	name	separated	by	a	dot.	
Inputs:	

− type:	a	descripEon	type	name	
− parameter:	a	parameter	name	that	is	defined	within	the	lhs	of	the	descripEon	rule;	if	

omi=ed,	the	term	‘value’	is	used	referring	to	the	enEre	value	of	the	descripEon	
Outputs:	

− reference:	the	resulEng	descripEon	reference	text	
	
SGI Spa=al Types

The	SGI Spatial Types	component	allows	the	user	to	select	a	spaEal	type	from	a	(drop-down)	
list	of	all	spaEal	types	available.	The	spaEal	type	is	idenEfied	by	a	number.	The	possible	
values	are	0	(point),		1	(line	segment),	2	(plane	segment),	3	(circle),	4	(ellipse),	5	(circular	arc)	
and	6	(quadraEc	Bezier).	

SGI Type Proper=es

The	SGI Type Properties	component	composes	descripEon	texts	referencing	each	of	the	
properEes	of	a	shape	element	type	by	concatenaEng	the	shape	element	type	name	with	the	
property	name	separated	by	a	dot.	The	shape	element	type	is	specified	as	a	spaEal	type	
(either	the	corresponding	numeric	value	or	a	text	specifying	the	type	name,	see	above).	An	
addiEonal	boolean	input	argument	(‘parametric’)	disEnguishes	shape	element	type	names	
within	parametric-associaEve	and	non-parametric	rules.	Finally,	the	shape	element	type	
name	may	be	replaced	with	a	reference	tag	(see	secEon	4. Crea=ng a shape object	on	how	
to	assign	a	hashtag	to	a	spaEal	element).	
Inputs:	

− type:	a	number	or	(parEal)	text	specifying	a	spaEal	type	(0	-	‘point’,	1	-	‘line’,	2	-	
‘plane’,	3	-	‘circle’,	4	-	‘ellipse’,	5	-	‘arc’,	6	-	‘bezier’)	

− parametric:	a	boolean	indicaEng	the	descripEon	will	be	used	as	part	of	a	parametric-
associaEve	or	non-parametric	rule	

− tag:	a	text	specifying	a	hashtag	referencing	a	spaEal	element	
Outputs:	

− proper7es:	the	resulEng	texts	referencing	each	of	the	properEes	of	a	shape	element	
type	

Shape element types and their available proper=es
Every	geometric	shape	element	type,	except	for	circular	arcs,	is	idenEfied	by	two	names.	The	
first	one	should	be	used	within	non-parametric	rules	and	the	second	within	parametric-
associaEve	rules	(pRule).	Note	that	circular	arcs	are	not	yet	available	within	parametric-
associaEve	rules	and,	if	specified,	will	be	ignored.	

type name property output value

points point3D value vector	tuple* posiEon
pointP3D

line	segments lineSeg3D root

direction
unitDir
start
end
midpoint
length
squareLength

vector	tuple*	

vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*	
number	
number

root	point	(nearest	point	
to	the	origin)	
direcEon	vector	
unit	direcEon	vector	
‘smallest’	endpoint	
‘greatest’	endpoint	
midpoint	
line	length	
square	value	of	line	
length

lineSegP3D

plane	segments planeSeg3D normal
area
outer

vector	tuple*	
number	
tuple	of	vector	
tuples*

normal	vector	
plane	area	
list	of	outer	boundary	
verEces

planesegP3D

circles circle3D normal
center

vector	tuple*	
vector	tuple*	

plane	normal	vector	
center	point	

*A	vector	tuple	is	a	tuple	of	two	or	three	numbers.	

circles
circleP3D

normal
center
radius
diameter
circumference
area

vector	tuple*	
vector	tuple*	
number	
number	
number	
number

plane	normal	vector	
center	point	
radius	
diameter	
circumference	
area	of	the	circle

ellipses ellipse3D normal
center
foci

radii

area

vector	tuple*	
vector	tuple*	
tuple	of	vector	
tuples*	
tuple	of	numbers	

number

plane	normal	vector	
center	point	
list	of	focal	points	

list	of	longer	and	shorter	
radii	
area	of	the	ellipse

ellipseP3D

circular	arcs arc3D normal
center
radius
diameter
circumference
start
end
length
angle

area

vector	tuple*	
vector	tuple*	
number	
number	
number	
vector	tuple*	
vector	tuple*	
number	
number	

number

plane	normal	vector	
circle	center	point	
circle	radius	
circle	diameter	
circle	circumference	
endpoint	(ccw)	
endpoint	(cw)	
arc	length	
angle	covered	by	the	arc	
(in	radians)	
area	covered	by	the	arc

quadraEc	Bezier	
curves

bezier3D normal
start
controlPoint
end
vertex

vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*

plane	normal	vector	
1st	control	point	
2nd	control	point	
3rd	control	point	
maximum	or	minimum	of	
the	curve

bezierP3D

labels/	
descripEons	as	
point	a=ribute

labelD value string label	or	descripEon	string

9. Specifying predicates

A	predicate	serves	to	express	a	special	condiEon	on	the	applicaEon	of	a	parametric-
associaEve	rule.	Such	condiEon	cannot	simply	be	explicated	within	the	leJ-hand-side	shape.	
As	an	example,	a	predicate	may	specify	that	the	line	segment	matching	a	given	line	segment	
must	be	the	shortest	line	segment	within	the	matching	shape.	Predicates	are	only	applicable	
to	parametric-associaEve	rules.	

SGI Void Predicate

The	SGI Void Predicate	component	composes	a	void	predicate	text	for	the	given	polygonal	
geometry	(or	geometries).	During	rule	matching,	the	void	predicate	requires	the	specified	
area	to	contain	no	geometric	shape	(points,	line	segments,	plane	segments).	Shapes	on	the	
border	of	the	area	are	not	counted.	It	is	important	that	the	polygon’s	verEces	coincide	with	
the	infinite	line	carriers	of	line	segments	within	the	lhs	of	the	rule,	while	at	least	some	
verEces	should	coincide	with	intersecEon	points	of	infinite	line	carriers.	
Inputs:	

− polygon:	a	polygonal	geometry	specified	as	a	list	of	verEces	or	points,	a	list	of	lines,	a	
polyline,	a	surface	or	another	geometry	

Outputs:	
− text:	the	resulEng	void	predicate	text,	for	example,	‘void:	{((0,0,0),(1,2,0),(2,0,0))}’	

10. Specifying direc=ves

DirecEves	are	opEonal	extra	specificaEons	for	applying	a	parametric-associaEve	rule	that	
cannot	be	specifically	expressed	within	the	right-hand-side.	As	an	example,	a	new	line	that	is	
added	in	the	rhs	is	specified	to	be	at	a	certain	distance	from	an	exisEng	point	or	line	
DirecEves	are	only	applicable	to	parametric-associaEve	rules.	

SGI Distance Direc=ve

The	SGI Distance Directive	component	composes	a	distance	direcEve	text	for	the	given	
reference	and	target	spaEal	element(s)	and	distance	measure(s)	or	expression(s).	During	rule	
applicaEon,	the	distance	direcEve	serves	to	indicate	the	distance	a	new	spaEal	element	(the	
target	point	or	the	infinite	carrier	of	a	line	segment)	must	be	away	from	an	exisEng	spaEal	
element	(the	reference	point	or	the	infinite	carrier	of	a	line	segment).	Four	cases	can	be	
disEnguished:	

− line-line	distance:	a	new	line	carrier	is	at	a	certain	distance	from	an	exisEng	line	
carrier;	the	new	line	must	be	parallel	to	the	exisEng	line	

− line-point	distance:	a	new	point	is	at	a	certain	distance	from	an	exisEng	line	carrier;	
the	new	point	must	be	on	another	exisEng	line	carrier	not	parallel	to	the	reference	
line	carrier	

− point-line	distance:	a	new	line	carrier	is	at	a	certain	distance	from	an	exisEng	point;	
the	new	line	must	pass	through	an	exisEng	point	or	intersecEon	point	or	endpoint	of	
a	line	

− point-point	distance:	a	new	point	is	at	a	certain	distance	from	an	exisEng	point;	the	
new	point	must	be	on	an	exisEng	line	carrier	

Inputs:	
− ref:	a	hashtag	referencing	a	spaEal	element	within	the	lhs	of	the	shape	rule	(see	

secEon	4. Crea=ng a shape object)	
− target:	a	hashtag	referencing	a	spaEal	element	within	the	rhs	of	the	shape	rule	
− dist:	a	numeric	distance	value	or	a	numeric	descripEon	expression	(see	secEon 8.

Specifying shape descrip=ons)	
Outputs:	

− text:	the	resulEng	distance	direcEve	text,	for	example,	‘distance:	{(#line1,	#newline1,	
2)}’	

Appendix A. A formal nota=on for shape descrip=ons

The	table	below	presents	a	formal	notaEon	for	shape	descripEons	and	the	leJ-hand-side	
(lhs)	and	right-hand-side	(rhs)	of	shape	descripEon	rules	in	Extended	Backus-Naur-Form	
(EBNF),	including	examples.	The	same	non-terminals	serve	to	define	the	producEon	rules	for	
a	descripEon,	an	lhs	and	an	rhs.	Only	when	necessary	are	alternaEve	producEon	rules	
defined	for	the	same	non-terminal;	these	are	then	idenEfied	by	adding	the	terms	
descrip7on,	lhs	and	rhs,	respecEvely,	enclosed	within	angle	brackets	(‘<...>’),	as	a	prefix	to	
the	respecEve	producEon	rule.	

typed-descripEon	=	type-name	‘:’	descripEon	.	
type-name	=	idenEfier	.	
descripEon	=	descripEon-enEty	|	descripEon-sequence	.  
descripEon-enEty	=	literal	|	top-level-tuple	.  
descripEon-sequence	=	‘&’	descripEon-enEty	‘&’	{	descripEon-enEty	‘&’	}	.

literal	=	keyword-literal	|	number	|	string	.  
keyword-literal	=	‘e’	|	‘nil’	|	‘pi’	|	‘true’	|	‘false’.  
number	=	[‘–’]	digit-sequence	[‘.’	digit-sequence]	.  
digit-sequence	=	digit	{	digit	}	. 
digit	=	‘0’	|	‘1’	|	‘2’	|	‘3’	|	‘4’	|	‘5’	|	‘6’	|	‘7’	|	‘8’	|	‘9’	.  
string	=	‘“’	{	string-character	}	‘”’	. 
string-character	=	any-character-except-quote	|	‘\’	‘“’	.

Example	descrip6on-en6ty: 
“centrally divided, double 1-rafter beam in front and back”
Example	descrip6on-sequence: 
&e&0&“nothing”&

top-level-tuple	=	tuple	|	unmarked-tuple	. 
tuple	=	‘(’	tuple-enEEes	‘)’	|	‘<’	[tuple-enEEes]	‘>’	|	‘[’	[tuple-enEEes]	‘]’	.  
<descripEon>tuple-enEEes	=	tuple-enEty-sequence	. 
<lhs>tuple-enEEes	=	tuple-enEty-sequence	|	tuple-expression	. 
<rhs>tuple-enEEes	=	tuple-enEty-sequence	|	tuple-expression	. 
tuple-enEty-sequence	=	tuple-enEty	({	‘,’	tuple-enEty	}	|	{	‘;’	tuple-enEty	})	. 
<descripEon>tuple-enEty	=	literal	|	tuple	.  
<lhs>tuple-enEty	=	numeric-expression	|	string-expression	|	tuple	.  
<rhs>tuple-enEty	=	numeric-expression	|	string-expression	|	tuple	|	funcEon-returns-tuple	.  
unmarked-tuple	=	tuple-expression	|	tuple	(tuple	|	keyword-literal)	{	tuple-enEty	}	.

Example	tuple: 
(“l:”, 10, “c:”, (0, 0), “r:”, 0)
Example	unmarked-tuple: 
<" ", "O", "R0", "R1"> <"O", 1, 1, 1> <"R0", 1, 1, 0> <"R1", 1, 0, 1>

descripEon-rule-side	=	descripEon-rule-enEty	|	descripEon-rule-sequence	. 
<lhs>descripEon-rule-enEty	=	literal	|	parameter	[‘?’	condiEonal]	|	string-expression	|	top-level-
tuple	.  
<rhs>descripEon-rule-enEty	=	numeric-expression	|	string-expression	|	funcEon-returns-tuple	|	
tuple-expression	.  
descripEon-rule-sequence	=	‘&’	descripEon-rule-enEty	‘&’	{	descripEon-rule-enEty	‘&’	}	.

parameter	=	idenEfier	.	  
idenEfier	=	(le=er	|	underscore)	{	(le=er	|	underscore	|	digit)	}	.  
le=er	=	‘A’	|	‘B’	|	‘C’	|	‘D’	|	‘E’	|	‘F’	|	‘G’	|	‘H’	|	‘I’	|	‘J’	|	‘K’	|	‘L’	|	‘M’	|	‘N’	|	‘O’	|	‘P’	|	‘Q’	|	‘R’	|	‘S’	|	
‘T’	|	‘U’	|	‘V’	|	‘W’	|	‘X’	|	‘Y’	|	‘Z’	|	‘a’	|	‘b’	|	‘c’	|	‘d’	|	‘e’	|	‘f’	|	‘g’	|	‘h’	|	‘i’	|	‘j’	|	‘k’	|	‘l’	|	‘m’	|	‘n’	|	
‘o’	|	‘p’	|	‘q’	|	‘r’	|	‘s’	|	‘t’	|	‘u’	|	‘v’	|	‘w’	|	‘x’	|	‘y’	|	‘z’	.  
underscore	=	‘_’	.

Example	<lhs>descrip6on-rule-en6ty: 
<“Fixed”, var1> <var2, var3> remainder
Example	descrip6on-rule-sequence: 
&a1&a2&a3&a4&a5&a6&a7&a8&

condiEonal	=	enumeraEon	|	equaEon	|	range.  
enumeraEon	=	‘{’	(number-sequence	|	string-sequence)	‘}’	. 
number-sequence	=	number	{	‘,’	number	}	. 
string-sequence	=	string	{	‘,’	string	}	. 
equaEon	=	comparator	comparand	.  
comparator	=	‘=’	|	‘<>’	|	‘<’	|	‘<=’	|	‘>’	|	‘>=’	.  
comparand	=	number	|	‘(’	numeric-expression	‘)’	|	parameter	|	reference	.	
range	=	‘[‘	number	‘,’	number	‘]’	.

Example	<lhs>descrip6on-rule-en6ty	with	enumera6on: 
yard?{nil, “default”}
Example	<lhs>descrip6on-rule-en6ty	with	equa6on: 
<nrooms?>2, rooms>

numeric-expression	=	term	{	addiEon-operator	term	}	.  
term	=	factor	{	mulEplicaEon-operator	factor	}	.  
factor	=	base	{	exponenEaEon-operator	exponent	}	.  
exponent	=	base	.  
base	=	keyword-literal	|	number	|	‘(’	numeric-expression	‘)’	|	funcEon-returns-number	|	
parameter	|	reference	.  
exponenEaEon-operator	=	‘^’	.  
mulEplicaEon-operator	=	‘*’	|	‘/’	|	‘%’	.  
addiEon-operator	=	‘+’	|	‘–’	.

Example	numeric-expression: 
vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3

string-expression	=	string-expression-enEty	{	‘.’	string-expression-enEty	}	.  
<lhs>string-expression-enEty	=	literal	|	parameter	[‘?’	condiEonal]	.  
<rhs>string-expression-enEty	=	base	|	string	|	funcEon-returns-string	.

Example	<rhs>string-expression: 
“with ”.(c + 1).“ columns”
Example	<lhs>string-expression: 
“with ”.c?=(be21 + be22).“ columns”

<lhs>tuple-expression	=	tuple-append	|	tuple-prepend	. 
<rhs>tuple-expression	=	tuple-addiEon	|	tuple-extension	.	 
tuple-append	=	{	tuple-enEty	}	parameter	(‘*’	|	‘+’)	tuple-enEty	{	tuple-enEty	}	[tuple-expression]	
.  
tuple-prepend	=	[tuple-expression]	{	tuple-enEty	}	tuple-enEty	parameter	(‘*’	|	‘+’)	{	tuple-
enEty	}	.  
tuple-addiEon	=	[parameter]	‘+’	basic-tuple-argument	.	 
tuple-extension	=	{	tuple-enEty	}	parameter	{	tuple-enEty	}	[tuple-expression]	.

Example	tuple-prepend: 
h1 h2 H*
Example	tuple-extension: 
a1 last(a1) + (0, 1)
Example	tuple-addi6on: 
bedrooms + <1, [(“couple”, 0), (“double”, 0), (“single”, 1)]>

funcEon	=	funcEon-returns-number	|	funcEon-returns-string	|	funcEon-returns-tuple	. 
funcEon-returns-number	=	numeric-funcEon	|	length-funcEon	|	string-funcEon-untyped	|	tuple-
funcEon-untyped	|	vector-funcEon	|	round-funcEon	|	random-funcEon	.  
numeric-funcEon	=	(‘sqrt’	|	‘sin’	|	‘cos’	|	‘tan’	|	‘asin’	|	‘acos’	|	‘atan’)	‘(’	numeric-expression	‘)’	|	
‘atan2’	‘(’	numeric-expression	‘,’	numeric-expression	‘)’	.  
length-funcEon	=	‘length’	‘(’	(string-argument	|	tuple-argument)	‘)’	. 
<lhs>string-argument	=	string	|	funcEon-returns-string	|	parameter	|	reference	.  
<rhs>string-argument	=	string-expression	.  
funcEon-returns-string	=	string-funcEon-returns-string	|	string-funcEon-untyped	|	tuple-funcEon-
untyped	.  
string-funcEon-returns-string	=	(‘leJ’	|	‘right’)	‘(’	string-argument	‘,’	numeric-expression	‘)’	.  
string-funcEon-untyped	=	‘eval’	‘(’	string-argument	‘)’	.  
tuple-funcEon-untyped	=	(‘first’	|	‘last’	|	‘min’	|	‘max’)	‘(’	tuple-argument	‘)’	.  
<lhs>tuple-argument	=	basic-tuple-argument	. 
<rhs>tuple-argument	=	basic-tuple-argument	|	tuple-expression	. 
basic-tuple-argument	=	tuple	|	funcEon-returns-tuple	|	parameter	|	reference	. 
funcEon-returns-tuple	=	tuple-funcEon-returns-tuple	|	funcEon-returns-vector	|	string-funcEon-
untyped	|	tuple-funcEon-untyped	.  
tuple-funcEon-returns-tuple	=	(‘unique’	|	‘segments’	|	‘pairwise’	|	‘loops’)	‘(’	tuple-argument	‘)’	|	
‘adjacencies’	‘(’	tuple-argument	‘,’	tuple-argument	‘)’	. 
funcEon-returns-vector	=	two-vector-funcEon	|	proj-vector-funcEon	|	scale-vector-funcEon	|	
round-funcEon	. 
two-vector-funcEon	=	(‘vectoradd’	|	‘vectorsubtract’	|	‘dotproduct’	|	‘crossproduct’)	‘(’	(vector-
argument	‘,’	vector-argument	|	two-vector-argument)	‘)’	. 
vector-argument	=	‘(‘	numeric-expression	‘,’	numeric-expression	[‘,’	numeric-expression]	‘)’	|	
funcEon-returns-vector	|	parameter	|	reference	.  
two-vector-argument	=	‘(‘	vector-argument	‘,’	vector-argument	‘)’	|	parameter	|	reference	. 
proj-vector-funcEon	=	‘proj’	‘(’	(vector-argument	‘,’	vector-argument	‘,’	vector-argument	|	three-
vector-argument)	‘)’	.  
three-vector-argument	=	‘(‘	vector-argument	‘,’	vector-argument	‘,’	vector-argument	‘)’	|	parameter	
|	reference	.  
scale-vector-funcEon	=	‘vectorscale’		‘(’	(vector-argument	‘,’	numeric-expression	|	vector-number-
argument)	‘)’	.  
vector-number-argument	=	‘(‘	vector-argument	‘,’	numeric-expression	‘)’	|	parameter	|	reference	. 
vector-funcEon	=	(‘mag’	|	‘angle’)	(‘(’	vector-argument	‘,’	vector-argument	‘)’	|	‘(’	two-vector-
argument	‘)’)	.  
round-funcEon	=	‘round’	‘(‘	(numeric-expression	|	vector-argument	‘)’	.  
random-funcEon	=	‘random’	‘(’	vector-argument	‘)’	.

Example	func6on-returns-number: 
length(“room”)
Example	func6on-returns-tuple: 
adjacencies(a4, a5 a6)

reference	=	reference-to-lhs	|	reference-to-rhs	. 
reference-to-lhs	=	[‘lhs.’]	reference-designator	‘.’	(‘value’	|	parameter	|	property)	[‘:’	filter]	.  
reference-to-rhs	=	‘rhs.’	reference-designator	‘.’	property	[‘:’	filter]	.  
reference-designator	=	idenEfier	.  
property	=	idenEfier	.  
filter	=	reference-designator	‘.’	property	filter-operator	(number	|	vector	|	string)	.  
filter-operator	=	‘=’	|	‘<>’	|	‘<=’	|	‘>=’	.  
vector	=	[raEonal]	‘(’	raEonal	‘,’	raEonal	‘,’	raEonal	‘)’	.  
raEonal	=	[‘–’]	digit-sequence	[‘/’	digit-sequence]	.

Example	reference-to-lhs: 
indices.value
Example	reference-to-rhs: 
rhs.sections.radius:labels.label=“S”

Appendix B. Descrip=on func=ons

Numerical func=ons

*atan	versus	atan2:	
− atan	takes	1	input	and	returns	a	result	from	quadrants	1	and	4	
− atan2	takes	2	inputs	(u,	v)	that	specify	a	raEo	u/v	and	returns	a	result	from	all	quadrants	
For	example:	

String func=ons

func6on input output

abs 1	number The	absolute	value	of	the	number

sqrt 1	number The	square	root	of	the	number

sin 1	number The	sine	value	of	the	angle	(in	radians)

cos 1	number The	cosine	value	of	the	angle	(in	radians)

tan 1	number The	tangent	value	of	the	angle	(in	radians)

asin 1	number The	inverse	sine	of	the	number	(in	radians)

acos 1	number The	inverse	cosine	of	the	number	(in	radians)

atan* 1	number The		inverse	tangent	of	the	number	(in	radians)

atan2* 2	numbers The	inverse	tangent	of	the	raEo	(in	radians)

todegree 1	number The	value	converted	from	radians	in	degrees

toradian 1	number The	value	converted	from	degrees	in	radians

round 1	number The	value	rounded	to	the	nearest	integer

u v x	=	u/v atan(x) atan2(u,v)

2 1 2 1.1071487177940904 1.1071487177940904

-2 1 -2 -1.1071487177940904 -1.1071487177940904

2 -1 -2 -1.1071487177940904 2.0344439357957027

-2 -1 2 1.1071487177940904 -	2.0344439357957027

func6on input output

length 1	string The	length	of	the	string

left 1	string	and	1	number The	leJ	substring	of	the	specified	length

right 1	string	and	1	number The	right	substring	of	the	specified	length

Tuple func=ons

func6on input output

length 1	tuple The	number	of	elements	in	the	tuple

first 1	tuple The	first	element	of	the	tuple

last 1	tuple The	last	element	of	the	tuple

min 1	tuple The	element	of	the	tuple	with	minimum	value

max 1	tuple The	element	of	the	tuple	with	maximum	value

unique 1	tuple A	tuple	of	only	unique	elements

pairwise 1	tuple A	tuple	of	pairs	extracEng	consecuEve	elements	
pairwise	from	the	operand	tuple; 
e.g.,	(a,	b,	c,	d)	->	((a,	b),	(c,	d))

segments 1	tuple A	tuple	of	overlapping	pairs	extracEng	
consecuEve	elements	from	the	operand	tuple; 
e.g.,	(a,	b,	c,	d)	->	((a,	b),	(b,	c),	(c,	d))

loops 1	tuple A	tuple	of	tuples	idenEfying	loops	in	the	operand	
tuple;	e.g.,	(a,	b,	c,	d,	a,	e,	f,	c)	->	((a,	b,	c,	d),	(c,	d,	
a,	e,	f)

adjacencies 2	tuples:	a	tuple	of	
“enclosures”	and	a	tuple	of	
“connecEng”	elements

A	tuple	of	tuples	represenEng	an	adjacency	
matrix

random 1	tuple:	either	2	or	3	
numbers

A	random	number	within	the	range	specified	by	
the	first	two	operands;	the	opEonal	third	
operand	is	considered	as	a	step	value	for	the	
random	number	generaEon

round 1	vector	tuple* A	vector	tuple	with	each	value	rounded	to	the	
nearest	integer

mag 2	vector	tuples* The	distance	between	the	two	vectors

angle 2	vector	tuples* The	angle	between	the	two	vectors	
(counterclockwise	angle	from	the	first	to	the	
second	vector)	(in	radians)

proj 3	vector	tuples*:	a	direcEon	
vector,	a	root	vector	and	a	
posiEon	vector

A	vector	tuple	represenEng	the	projecEon	of	the	
posiEon	vector	on	the	line	specified	by	the	
direcEon	vector	and	root	vector

vectoradd 2	vector	tuples* A	vector	tuple	represenEng	the	sum	of	the	two	
vectors

vectorsubtract 2	vector	tuples* A	vector	tuple	represenEng	the	difference	of	the	
two	vectors

vectorscale 1	vector	tuple*	and	1	number A	vector	tuple	represenEng	the	product	of	the	
vector	and	the	scalar

*A	vector	tuple	is	a	tuple	of	two	or	three	numbers;	any	funcEon	accepEng	(one	or	more)	
vector	tuples	will	also	accept	a	single	tuple	collecEng	all	operands	

dotproduct 2	vector	tuples* The	number	resulEng	from	the	dot	product	of	the	
two	vectors

crossproduct 2	vector	tuples* A	vector	tuple	represenEng	the	cross	product	of	
the	two	vectors

Appendix C: FAQ

1. I	get	a	warning	or	error	that	makes	no	sense	to	me.	What	can	I	do?	
Please	recompute	the	Grasshopper	model	(F5)	or	reconnect	an	input	to	the	SGI	Setup	
component	to	force	this	component	to	recompute.	This	may	resolve	the	issue;	someEmes,	a	
disconnect	may	occur	between	the	Grasshopper	model	and	the	SortalGI	engine,	which	may	
result	in	a	warning	or	error	with	li=le	or	no	relaEon	to	the	actual	data.	

2. Can	I	get	some	help?	
You	can	post	a	message	on	the	SortalGI	forum	(h=p://sortal.org/feedback/)	or	e-mail	
stouffs@sortal.org	

http://sortal.org/feedback/
mailto:stouffs@sortal.org

	1. About the SortalGI plug-in
	2. Installation and update
	3. Starting on a SortalGI-based parametric model
	4. Creating a shape object
	5. Manipulating a shape object
	6. Creating a rule
	7. Applying a rule
	8. Specifying shape descriptions
	9. Specifying predicates
	10. Specifying directives
	Appendix A. A formal notation for shape descriptions
	Appendix B. Description functions
	Appendix C: FAQ

